

WEBER, HAYES & ASSOCIATES Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 // www.weber-hayes.com

REMEDIAL ACTION COMPLETION REPORT COMMERCIALLY-ZONED WAREHOUSE PROPERTY

Site: Commercially-Zoned Warehouse Property

25 E. FIFTH STREET WATSONVILLE, CA

APN: 018-151-39

GeoTracker I.D.: T10000008129

PROJECT #: 2X404.B

JANUARY 5, 2018

For Submittal to: SANTA CRUZ COUNTY ENVIRONMENTAL HEALTH SERVICES (SCC-EHS) SITE MITIGATION ATTN: SCOTT CARSON, PG 701 Ocean Street, Room 312 Santa Cruz, CA 95060

Prepared for: PHIL AND MARTHA ONETO C/O: MR. ROBERT BOSSO Bosso Williams, A Professional Corporation P.O. Box 1822 Santa Cruz, CA 95061

TABLE OF CONTENTS

1.0	EXE	CUTIVE SUMMARY			
	1.1	Remedial Action Goals	1		
	1.2	Selected Remedial Action			
	1.3	Remedial Excavation of Shallow Impacted Soils & Installation of a Protective Cap			
	1.4	Confirmation Soil Sampling & Residual Soil Impacts	3		
	1.5	Conclusions & Recommendations	3		
2.0	SITE BACKGROUND & SUMMARY OF PREVIOUSLY COMPLETED ENVIRONMENTAL				
	ASS	ESSMENTS			
	2.1	Site Background			
	2.2	Preliminary Soil and Groundwater Assessment			
		2.2.1 Soil			
		2.2.2 Grab Groundwater			
	2.3				
		2.3.1 Results of Soil Characterization			
		2.3.2 Results of Groundwater Characterization			
		2.3.2.1 Semi-Annual Groundwater Monitoring			
		2.3.3 Results of Soil Vapor Characterization			
		2.3.3.1 Semi-Annual Soil Vapor Monitoring			
	2.4	Site Assessment Conclusions	9		
3.0	REN	MEDIAL ACTION GOALS	. 9		
4.0	FEA	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE			
	FEA 4.1	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE Selected Remedial Action - Focused Excavation with Offsite Disposal and Capping w	ith		
		SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith		
	4.1	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE Selected Remedial Action - Focused Excavation with Offsite Disposal and Capping w	ith 10		
4.0	4.1	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 11		
4.0	4.1 REN	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE Selected Remedial Action - Focused Excavation with Offsite Disposal and Capping w Institutional Control MEDIAL EXCAVATION OF SHALLOW IMPACTED SOILS Pre-Excavation Activities Soil Vapor Monitoring Well Destructions	ith 10 11 11 12		
4.0	4.1 REN 5.1	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 11 12		
4.0	4.1 REN 5.1 5.2	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13		
4.0	4.1 REN 5.1 5.2	ASIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14		
4.0	4.1 REN 5.1 5.2	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14		
4.0	4.1 REN 5.1 5.2	ASIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14		
4.0	4.1 REN 5.1 5.2	ASIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14 14 14		
4.0	4.1 REN 5.1 5.2	 SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14 14 15 16		
4.0	4.1 REN 5.1 5.2	ASIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14 14 15 16		
4.0	4.1 REN 5.1 5.2 5.3	 SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14 14 15 16 16		
4.0	4.1 REN 5.1 5.2 5.3 5.4 COI	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14 15 16 16 17		
4.0 5.0 6.0	4.1 REN 5.1 5.2 5.3 5.4 COI REC	SIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE	ith 10 11 12 13 13 14 14 14 15 16 16 17 17		

FIGURES			
FIGURE 1	Location Map		
Figure 2	Site Map showing: 1) Soil Impacts Exceeding Commercial Screening Thresholds, and 2) Completed Remedial Alternative No. 2 – Focused Removal of Shallow Soil Impacts		
Figure 3	Site Map showing Completed Remedial Excavation and Cap Areas & Intact Concrete Slabs Encountered Beneath Parking Lot		
Figure 4	Site Map showing: 1) Protective Soil Cap Areas, and 2) Residual Soil Impacts Exceeding Commercial Screening Thresholds		
Figure 5	Site Map Showing Existing & Destroyed Dual Depth Soil Vapor Monitoring Well Locations		

	Appendices
APPENDIX A	Site Description & Summary of Previously Completed Soil & Groundwater Assessment
Appendix B	Review of Former Watsonville-1 Manufactured Gas Plant Characterization & Corrective Actions (618 Main Street, Watsonville - Adjacent Jalisco Restaurant Property)
Appendix C	Field Documentation
Appendix D	Daily Dust Monitoring Histograms
Appendix E	Landfill Disposal Documentation
Appendix F	Historical Correspondence & Maps

WEBER, HAYES & ASSOCIATES Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 // www.weber-hayes.com

1.0 EXECUTIVE SUMMARY

The following report documents the implementation and completion of a regulatory approved *Remedial Action Plan (RAP)* for the commercially-zoned warehouse property located at 25 East Fifth Street in Watsonville (the "Site", Figure 1). The *RAP* was designed to reduce elevated soil contaminant concentrations at the Site with the overall goal of reducing potential future exposure to humans (workers/visitors) to prevent potential ingestion or dermal contact to underlying soils impacted by elevated concentrations of Manufactured Gas Plant (MGP) contaminants.

The completed remedial action also requires that the property be restricted for commercial use only through a *Covenant and Environmental Deed Restriction of Property* (environmental deed restriction) and that a *Site Environmental Management Plan* be prepared as a standalone document that provides a description of the residual soil impacts and protective cap such that the long-term stewardship of the protective cap can be maintained. Draft versions of these documents have been prepared under separate cover for submittal to the County of Santa Cruz Environmental Health Division (Environmental Health) and will be finalized following their review and approval. The environmental deed restriction will ultimately be recorded in the Official Records of the County of Santa.

The following Executive Summary subsections summarize the remedial action goals, the selected remedial alternative identified through a completed *Feasibility Study*, and the completed remedial action.

1.1 REMEDIAL ACTION GOALS

The results of extensive Site characterization analysis indicated that corrective actions completed at the adjacent Jalisco Restaurant property (i.e., adjoining, historic MGP site), which included focused shallow soil removal/capping and institutional controls (i.e., deed restriction) would similarly be appropriate for reducing risk at the subject commercial Site.

It has been more than 100 years since the MGP ceased operations and ongoing groundwater and soil gas monitoring at the adjacent Jalisco Restaurant property indicates that residual contaminants in these media generally appear to be in equilibrium. Based on the extensive data collected to date, it is very unlikely that residual soil or groundwater impacts will create a soil vapor intrusion issue, and conversely, residual soil impacts are not a leachable source that will impact shallow groundwater in any significant way. Because residual contaminants in groundwater and soil vapor media do not pose a threat to human health or the environment, they were not considered for remedial action.

Residual contaminant concentrations in shallow soils could potentially pose a threat to human health during construction/maintenance (e.g., future utility trench installations or planter area maintenance) where workers could be directly exposed to the impacted soils. Therefore, the overall goal of remedial action was to reduce potential future exposure of humans (workers/visitors) to prevent potential

ingestion or dermal contact to underlying soils impacted by elevated concentrations of MGP contaminants.

1.2 SELECTED REMEDIAL ACTION

Weber, Hayes and Associates completed a *Feasibility Study*¹ for evaluating remedial action alternatives and screened three (3) remedial action options/remedial alternatives for reducing soil concentrations at the Site. *Remedial Alternative No. 2* - focused excavation of shallow soil impacts with capping and institutional control (i.e., environmental deed restriction) was determined to be the most cost effective and practical remedial action for the Site. This alternative removes the majority of the most significant, well defined shallow soil impacts from the subsurface while effectively reducing potential future exposure to on-site workers and visitors (see Figure 2). The protective cap (i.e. imported clean fill/base rock and asphalt pavement) prevents direct contact with contaminants by property users. Because of the relatively immobile nature of the Site contaminants of concern, it was our opinion that there would be no increased overall benefit to removing deeper soil impacts as it would pose an incredible fiscal hardship on the property owners who innocently purchased the subject Site in 1987 with assurances the property was not impacted (Appendix F).

1.3 REMEDIAL EXCAVATION OF SHALLOW IMPACTED SOILS & INSTALLATION OF A PROTECTIVE CAP

Extensive soil characterization completed at the Site defined the areal extent of soil impacts within the parking lot to be approximately 6,000 square feet (see Figure 2). These areas include: 1) a smaller, approximate 895 ft² area at the northwestern corner of the property, and 2) a larger, approximate 5,160 ft² area within the central portion of the parking lot.

- Remedial excavation to a depth of 1.5 feet below the ground surface (bgs) and off-site disposal of these well-defined soil impacts was completed by a Haz-certified licensed excavation contractor (Randazzo Enterprises, Inc.) between October 2 and 6, 2017.
 - Regulatory Approved RAP Deviation: several large, intact concrete slabs (~6-inches thick) with good integrity were unexpectedly encountered beneath the parking lot within the approved remedial excavation areas. As these intact slabs effectively create a solid, clean barrier above the residual soil impacts and achieve the goal of reducing direct exposure contact with current and future site users (i.e., a protective cap), they were left in-place with approval from Environmental Health (see Figure 3).
- Approximately 250 yds³ (348.52 tons) of non-hazardous soils and 60 yds³ (81.11 tons) of soil classified as a California hazardous waste were directly loaded for transport and disposal at John Smith Road Landfill and Kettleman Hills Landfill, respectively.

¹ Weber, Hayes & Associates: Feasibility Study & Remedial Action Plan, dated June 21, 2017

 Following impacted soil removal, a delineation geotextile material (Mirafi 500X) was installed across the entire footprint of the excavation areas to serve as a visual separator between the clean cap material and the residual soil impacts.

Additional details of remedial excavation and off-site disposal are described in Section 5.0.

Following completion of the prescribed remedial excavation, a licensed grading and paving company (Watsonville Grading & Excavation, Inc.) restored the parking lot between October 9 and November 8, 2017, as follows:

- Emplaced and compacted 15-inches of clean, imported base rock into the excavation areas and resurfaced the parking lot with 3-inches of asphaltic concrete
- Two existing planter areas that were removed as part of remedial excavation efforts were not replaced, but were also capped (as described above) in order to eliminate future contact with impacted soils beneath these locations.

Additional details of Site capping and restoration activities are described in Section 5.4.

1.4 CONFIRMATION SOIL SAMPLING & RESIDUAL SOIL IMPACTS

The extensive Site soil characterization data set provides adequate documentation of residual soil impacts that remain at the Site following remedial excavation activities. Therefore, confirmation soil sampling following remedial excavation was not planned, nor conducted.

The following represent the highest concentrations of residual soil impacts exceeding applicable commercial screening thresholds that have been left in-place beneath the protective cap (see Figure 4):

- Benzo(a)pyrene Equivalent: 89.89 mg/kg detected at boring B-9 at a depth of 1.5 feet bgs
- TPH-diesel: 4,980 mg/kg detected at boring B-9 at a depth of 4 feet bgs
- TPH-motor oil: 12,350 mg/kg detected at boring B-9 at a depth of 4 feet bgs
- Lead: 356 mg/kg detected at boring B-7 at a depth of 1.5 feet bgs

1.5 CONCLUSIONS & RECOMMENDATIONS

In addition to documenting the successful completion of regulatory approved remedial actions in this completion report, we have prepared the following draft documents for Environmental Health review and approval:

1. An *Environmental Site Management Plan* documenting the location of residual soil impacts and protective cap, including requirements for annual cap inspections, such that the long-term stewardship of the protective cap can be maintained, and

2. A Covenant and Environmental Deed Restriction of Property documenting the residual soil impacts and restricting the property for commercial use only, which will ultimately be recorded in the Official Records of the County of Santa Cruz

As required by Environmental Health, we recommend completing one more round of soil vapor and groundwater monitoring in general accordance with our regulatory approved *Proposed Semi-Annual Groundwater and Soil Vapor Monitoring*, dated March 6, 2017 (post-remedial action sampling schedule to be determined following consultation with Environmental Health). If results of soil vapor and groundwater concentrations continue to confirm no significant risk to site receptors or to the environment, we will recommend cessation of monitoring followed by soil vapor monitoring well destruction and No Further Action for the Site.

This concludes the Executive Summary.

2.0 SITE BACKGROUND & SUMMARY OF PREVIOUSLY COMPLETED ENVIRONMENTAL ASSESSMENTS

The following subsections provide a brief overview of previously completed soil, groundwater and soil vapor sampling that has been conducted at the property. A more comprehensive overview along with Tables and Figures of previously collected data and analytical results is presented as Appendix A.

2.1 SITE BACKGROUND

Historic land use maps document that a manufactured gas plant (MGP) operated on the adjacent parcel to the west (618 Main St) from the late 1800's to the early 1900's, and gasification infrastructure extended onto the subject Site. Since 1986, PG&E has conducted detailed subsurface assessment investigations and remedial actions on the adjoining 618 Main St. property but has stated it is not responsible for relic gasification wastes that extend across the property line based on their review of successor corporations and property sales². A description of MGP operators and successors is described in Appendix A.

PG&E issued a letter on June 20, 1986 offering to test soils on the 25 East Fifth Street property "to determine if gas plant residues are present"³. The current property owners took PG&E up on the offer and subsequently purchased the property in 1986 after obtaining notification that "there were no

 ²: Sedgwick, Detert, Moran & Arnold (PG&E's legal counsel): Opinion on why PG&E believes it is only responsible for the property where it formerly had a customer service center is not responsible for the entire area formerly occupied by the MGP.
 <u>http://www.envirostor.dtsc.ca.gov/regulators/deliverable_documents/2907193839/Sedgwick%20Letter%207_16_20</u> 07.PDF

³: PG&E Co. letter (Gayle Hamilton) to the owner of the 25 E. Fifth Street property: Summary of PG&E's Gas Plant Identification and Evaluation Program, June 20, 1986. Copy included in Appendix F.

contaminant detections that were greater than anything found in any city street⁷⁴. We have not been able to locate results of PG&E's sampling of the subject Site. Approximately six months later (January 1987) the owner of the adjoining 618 Main St. property was provided this letter showing elevated levels of gas plant type wastes in surface soils (PNAs = 11 mg/kg)⁵. A *Preliminary Soil and Groundwater Assessment*⁶ completed for the subject Site in 2010 confirmed the presence of MGP waste similar to that detected at the adjacent parcel to the west (618 Main St). For reference, a summary of characterization and corrective actions completed at this adjacent property is included in included in Appendix B and historical documentation and land use maps are included as Appendix F.

2.2 PRELIMINARY SOIL AND GROUNDWATER ASSESSMENT

The results of a previously completed *Preliminary Soil and Groundwater Assessment* revealed the following:

2.2.1 Soil

Laboratory results of two (2) 4-point composite samples collected across the parking lot area confirmed that shallow soils / fill material consistently contained elevated levels of Polynuclear Aromatic Hydrocarbon (PAHs) compounds at sampling depths of 1 and 4 feet below the ground surface (bgs). In addition to the detection of PAHs, there were also some low-level detections of motor oil range total petroleum hydrocarbons. No elevated concentrations of metals were detected in shallow soils / fill material during this preliminary assessment.

Deeper soils (to 30 feet bgs) were examined at four (4) exploratory boring locations on the Site (DP-3, -4, -6 & -8). Soil discoloration and chemical odors were observed only in the soil core collected at DP-7, positioned just south of the former MGP's infrastructure. "Black oily gobs" and strong hydrocarbon odor were observed to be limited to a relatively thin lens at 22 to 23 feet bgs, just above first encountered groundwater at 24 feet bgs. No other obvious soil impacts were observed in any of the other seven shallow or deeper borings. The results show that PAH and motor oil range total petroleum hydrocarbons was limited to the visually impacted lens, at concentrations exceeding regulatory threshold limits.

Laboratory results of shallow soil testing from: 1) within the fill soils, and 2) in native soils immediately below the fill materials, confirmed both zones are impacted with concentrations of "aged" petroleum hydrocarbons and PAHs in soil that exceed regulatory screening levels.

⁴: Personal communication from PG&E staff (Loren Ingols) to current property owner (Martha Oneto) prior to the purchase of the property.

⁵ PG&E Co. letter (Genemarie Gawthorp) to the owner of the 618 Main Street property: Summary of PG&E's Gas Plant surface soil sampling results, January 19, 1987. Copy included in Appendix F.

^{6:} WHA report: Preliminary Soil and Groundwater Assessment, 25 East Fifth Street, Watsonville, dated July 29, 2010.

2.2.2 Grab Groundwater

Grab groundwater samples were collected and analyzed from the 4 deeper exploratory borings (DP-3, -4, -6 & -8). None of the tested groundwater contained elevated concentrations of chemicals of potential concern that exceeded Water Quality Goals (including TPH, VOCs, and PAHs). The laboratory results did note, however, a low-level detection of TPH in the range of gasoline (TPH-gasoline) in the groundwater sample collected from the aforementioned soil-impacted boring (DP-7). Specifically, the State-certified laboratory detected 150 µg/L of weathered TPH-gasoline.

2.3 ADDITIONAL SITE ASSESSMENT - 2016

A recently completed Additional Site Assessment was designed to provide sufficient characterization of subsurface conditions with the goal of quantifying potential human health risks for commercial land use, and ultimately to propose a plan that effectively separates any residual soil impacts from current and future tenants leasing the property.

The scope of work completed for the ASA included:

- Soil Characterization: Installation of fifteen (15) shallow (i.e., 4-feet deep) soil borings throughout the Site to provide sufficient vertical and lateral definition of shallow soil chemical impacts previously detected beneath the Site (B-1 through B-15). Five (5) of these borings extended to depths of 20 to 30 feet below the ground surface (bgs) to collect data on deeper soil chemical impacts (B-3, B-5, B-8, B-11, and B-14). Five (5) shallow (i.e., 0.5 and 1.5 feet deep) soil samples were also collected from native soils within all tree well / planter areas (P-1 through P-4 and P-7). In addition, following receipt of initial soil sample analytical results, we installed four (4) "data gap" soil borings (DG-1 through DG-4) to depths of 8 feet bgs and advanced borings B-9 and P-2 to depths of 8 and 18 feet, respectively, in order to provide better vertical and lateral definition of detected soil impacts.
- Groundwater Characterization: Collected grab groundwater samples from five (5) locations throughout the Site (GW-1 through GW-5) in order to provide additional data on previously detected low-level chemical impacts to groundwater.
- Soil Vapor Characterization: Installed and sampled five (5) permanent dual-depth (i.e., 5 and 10 feet bgs) soil vapor sample points (SV-1 through SV-5) to assess potential soil vapor intrusion concerns.

2.3.1 Results of Soil Characterization

In general, the extensive soil characterization identified relatively shallow (i.e., approximately 2-4 feet below grade) polynuclear aromatic hydrocarbons (PAHs), and to a much lesser extent Total Petroleum Hydrocarbons as diesel/motor oil (TPH-d/mo) and/or lead concentrations exceeding applicable commercial screening thresholds which correlate with the historic MGP infrastructure footprint (i.e.,

central to northwestern portion of the parking lot), with deeper PAH and TPH-d/mo soil impacts that appear to originate in the vicinity of boring P-2 (adjacent to the former MGP generator room) as evidenced by black soil discoloration and associated strong hydrocarbon-like odors persisting from approximately 6.5 feet to 15 feet below the ground surface (bgs). The impacts observed at boring P-2 appear to migrate laterally and deeper to borings B-8, B-11 and DP-7 (DP-7 installed in 2010) as evidenced by a lens of soil discoloration/odor at progressively deeper depths to the west-southwest of boring P-2. Boring B-9 (near impacted boring P-2) also exhibited deeper PAH impacts to at least 8 feet bgs. The most significant soil impacts are observed at borings B-9 and P-2.

The well-defined areal extent of soil impacts within the parking lot is approximately 6,000 square feet (see Figure 2).

2.3.2 Results of Groundwater Characterization

Concentrations of PAHs (including naphthalene), TPH-diesel and cyanide (GW-3 only) exceeding conservative groundwater ESLs were limited to borings GW-1 and GW-3 (along the western property line with Jalisco Restaurant), with only a slight exceedance of naphthalene detected in upgradient boring GW-2. Similar order of magnitude groundwater concentrations detected in the Jalisco Restaurant property monitoring well network correlate with these detections, indicating a relatively small, low-concentration groundwater plume.

2.3.2.1 Semi-Annual Groundwater Monitoring

Follow up groundwater sampling at previous grab-groundwater sampling locations GW-1, GW-2 and GW-3 completed in accordance with a regulatory approved *Proposed Semi-Annual Groundwater and Soil Vapor Monitoring*, dated March 6, 2017, was conducted on March 22, 2017. Results confirmed the following:

Concentrations of PAHs (including naphthalene), TPH-gas and diesel, and cyanide (GW-3 only) exceeding conservative groundwater ESLs continued to be limited to borings GW-1 and GW-3 (along the western property line with Jalisco Restaurant), with no exceedances in upgradient boring GW-2.

We note that nearly 25 years of groundwater monitoring at the hydraulically downgradient Jalisco Restaurant property has confirmed that the dissolved plume is stable and not migrating.

2.3.3 Results of Soil Vapor Characterization

VOC sample analytical results revealed no exceedance above applicable commercial screening thresholds, and were several orders of magnitude below the *Risk Based Soil Gas Screening Levels* (RBSLs) developed for the adjacent Jalisco Restaurant property, with the exception of 1,2-Dibromoethane (a.k.a EDB) detected at a concentration of 99 μ g/m³ in sample SV-3 at 10 feet below grade, which is above the California DTSC Modified Soil Gas Screening level ("near-source") set at 20 μ g/m³. The sample collected at 5 feet bgs at this location was non-detect for this compound.

2.3.3.1 Semi-Annual Soil Vapor Monitoring

Follow up soil vapor sampling of existing dual-depth soil vapor monitoring wells SV-1 through SV-5 completed in accordance with a regulatory approved *Proposed Semi-Annual Groundwater and Soil Vapor Monitoring*, dated March 6, 2017, was conducted on March 30, 2017. However, "no flow" conditions were encountered at the following sample locations and depths, and no samples were obtained:

- SV-1 at 10 feet (water observed in sample tubing during purge)
- SV-2 at 10 feet (down hole vacuum > 7.5 inches Hg)
- SV-3 at 5 and 10 feet (down hole vacuum > 7.5 inches Hg)
- SV-4 at 10 feet (down hole vacuum > 7.5 inches Hg)

Results of samples that were obtained on March 30, 2017 confirmed the following:

Results continued to confirm no exceedance above applicable commercial screening thresholds, with the exception of benzene detected at SV-1 (shallow), which was slightly the above the US EPA Regional Screening Level. Benzene was previously not detected at this location, nor was it previously detected in nearby shallow soil samples (B-3 and B-6 positioned ~15-20 feet away). All detected concentrations were several orders of magnitude below the Risk Based Soil Gas Screening Levels (RBSLs) developed for the adjacent Jalisco Restaurant property. A previous detection of 1,2-Dibromoethane (a.k.a EDB) at a concentration of 99 μ g/m³ in sample SV-1 at 10 feet below grade during the May 2016 sampling event was the only slightly elevated VOC concentration detected at the Site, which was above the California DTSC Modified Soil Gas Screening level ("near-source") set at 20 μ g/m³.

Soil vapor sampling at locations that were not collected during the first semi-annual sampling event of 2017 (March 30, 2017) due to no flow conditions were sampled on August 8, 2017, with the exception of well SV-3 at 10 feet, which again exhibited no flow conditions. Results of samples that were obtained on August 8, 2017 confirmed the following:

VOCs were not detected above laboratory Method Detection Limits in any of the collected samples. These results are very similar the initial, non-detectable concentrations of VOCs observed for these locations in May 2016, with the following exceptions:

- The elevated concentration of 1,2-Dibromoethane detected at SV-1 @ 10 feet (99 ug/m³) was not detected (<2.9 ug/m³) during the August 8, 2017 sampling event.
- Relatively low-level concentrations of BTEX (below CA DTSC-Modified Soil Gas Levels) were
 detected in May 2016 at SV-3 at 10 feet. To date we have not been able to confirm these initial
 detections due to no flow conditions. However, we note that two rounds of sampling from the 5
 foot depth at this location has confirmed trace to non-detectable concentrations of VOCs below
 commercial CA DTSC-Modified Soil Gas Levels.

Based on all Site soil vapor sample results to date there does not appear to be a soil vapor intrusion risk for the Site.

2.4 SITE ASSESSMENT CONCLUSIONS

The extensive soil, soil vapor and groundwater data set obtained during the Additional Site Assessment, Semi-Annual Grab Groundwater and Soil Vapor Monitoring, and previous 2010 Preliminary Soil and Groundwater Assessment confirm that the Site has been well characterized with no significant data gaps. Specifically:

- The relatively dense soil sampling grid across the Site parking lot (i.e., ~20 foot on center sample locations) with soil sample analysis at depths of at least 0.5, 1.5 and 4 feet bgs provided high resolution characterization of shallow soil impacts across this Site. Contaminants that could pose a potential direct exposure risk to commercial receptors (only if handling of impacted soils were to occur) include PAHs, and to a much lesser extent TPH-d/mo and lead. The areal extent of these well-defined soil impacts across the parking lot area is approximately 6,000 square feet (see Figure 2).
- Shallow groundwater impacts are limited to the northwestern portion of the Site (i.e., elevated concentrations of PAHs, cyanide and/or TPH-diesel detected in two of the nine on-Site grab groundwater sample borings) and are similar to concentrations observed at the adjacent Jalisco Restaurant property. Nearly twenty-five (25) years of groundwater monitoring at the hydraulically downgradient Jalisco Restaurant property has confirmed that the dissolved plume is stable and not migrating.
- The very low-level soil vapor concentrations detected in the dual depth vapor wells positioned in front of the on-Site warehouse building indicate that there is no soil vapor intrusion concern for the building occupants. We note that soil vapor sample points SV-2 and SV-3, which are positioned in the immediate vicinity of the most significant Site soil impacts (i.e., detected at borings P-2 and B-9) have yielded no elevated concentrations of VOCs.

3.0 REMEDIAL ACTION GOALS

The results of extensive Site characterization analysis indicate that corrective actions completed at the adjacent Jalisco Restaurant property (i.e., adjoining, historic MGP site), which included focused shallow soil removal/capping and institutional controls (i.e., deed restriction) would similarly be appropriate for reducing risk at the subject commercial Site.

It has been more than 100 years since the MGP ceased operations and ongoing groundwater and soil gas monitoring at the Jalisco Restaurant property indicates that residual contaminants in these media generally appear to be in equilibrium. Based on the extensive data collected to date, it is very unlikely that residual soil or groundwater impacts will create a soil vapor intrusion issue, and conversely, residual soil impacts are not a leachable source that will impact shallow groundwater in any significant way. Because residual contaminants in groundwater and soil vapor media do not pose a threat to human health or the environment, they are not being considered for remedial action.

Residual contaminant concentrations in shallow soils could potentially pose a threat to human health during construction/maintenance (i.e., future utility trench installations or planter area maintenance) where workers could be directly exposed to the impacted soils. Therefore, the overall goal of remedial action was to reduce potential future exposure of humans (workers/visitors) to prevent potential ingestion or dermal contact to underlying soils impacted by elevated concentrations of MGP contaminants.

4.0 FEASIBILITY STUDY & SELECTED REMEDIAL ACTION ALTERNATIVE

We screened three (3) remedial action options/remedial alternatives for reducing soil concentrations at the Site, which included:

- 1. No Action (with institutional control)
- 2. Focused excavation with offsite disposal and capping with institutional control
 - 3. Removal of all accessible soil impacts with institutional control

Each remedial alternative was evaluated for technical feasibility, cost and effectiveness. Details of this Feasibility Study are provided in our regulatory approved *Feasibility Study and Remedial Action Plan*, dated June 21, 2017.

4.1 SELECTED REMEDIAL ACTION - FOCUSED EXCAVATION WITH OFFSITE DISPOSAL AND CAPPING WITH INSTITUTIONAL CONTROL

The most cost effective and practical remedial action for the Site was *Remedial Alternative No. 2* - focused excavation of shallow soil impacts with capping and institutional control (i.e., deed restriction). This alternative removes the majority of the most significant, well defined shallow soil impacts from the subsurface while effectively reducing potential future exposure to on-site workers and visitors (see Figure 2). The cap (i.e. imported clean fill/base rock and asphalt pavement) prevents direct contact with contaminants by property users. Because of the relatively immobile nature of the Site contaminants of concern, it is our opinion that there would be no increased overall benefit to removing deeper soil impacts as it would pose an incredible fiscal hardship on the property owners who innocently purchased the subject Site in 1987 with assurances the property was not impacted (Appendix F).

The advantages of implementing the selected remedial action included a significant reduction in:

- overall cost an estimated \$120K vs. \$850K
- worker exposure to contaminants during soil removal efforts (approximately 5 days vs. 25 days)

- · increased traffic and stress to local roadways from import/export of soil and fill material
- off-site migration of impacted soils via (i.e., via potential tire tracking or dust)
- dust and potential nuisance odor to on-site workers and nearby community
- overall disturbance to the on-site tenants that require the parking lot area for numerous shipments of product during the week and customer access

The following section describe in detail the remedial action implementation field activities including impacted soil removal and off-site disposal and cap emplacement / parking lot restoration.

5.0 REMEDIAL EXCAVATION OF SHALLOW IMPACTED SOILS

Based on results of the extensive soil characterization completed at the Site, we defined the areal extent of soil impacts within the parking lot to be approximately 6,000 square feet (see Figure 2). The lateral extent of impacted areas proposed for removal were defined to the north and south by surrounding soil samples that revealed no elevated impacts (i.e., less than applicable commercial screening levels, at a minimum), to the west by adjacent property boundaries, and to the east by a 5-foot wide concrete walkway that runs parallel to the on-site warehouse building. The impacted areas that were proposed for removal include: 1) a smaller, approximate 895 ft² area at the northwestern corner of the property, and 2) a larger, approximate 5,160 ft² area within the central portion of the parking lot.

The most significant PAH, lead and TPH soil impacts were defined to be generally limited to the 1.5 foot sample depth across these impacted areas, with the exception of a few sample locations (i.e., B-8, B-9, DG-1 and P-2) that exhibit deeper soil impacts of similar magnitude. Previously collected soil sample analytical data is presented in Appendix A.

Two (2) of the existing planters situated within the proposed excavation footprints were completely removed as part of the removal effort and were not replaced.

Field notes and photo sheets documenting remedial excavation and Site restoration activities are included for reference in Appendix C.

5.1 PRE-EXCAVATION ACTIVITIES

Pre-excavation tasks included the following:

- Obtained regulatory approved of the Remedial Action Plan
- Preparation of an Environmental Site Health & Safety Plan in accordance with State and Federal hazardous waste operations regulations (California Code of Regulations, Title 8, Section 5192 and 29 Code of Federal Regulations 1910.120)
- Pre-Profiling soils for disposal at appropriate landfills

- Obtaining a Grading Permit through the City of Watsonville Public Works Department (included in Appendix C)
- Obtaining an Encroachment Permit through the City of Watsonville Public Works Department for parking lane encroachment adjacent to the Site for truck loading (also included in Appendix C)
- Obtaining a Building Permit through the City of Watsonville Public Works Department for parking lot restriping plan review and approval (also included in Appendix C)
- Issuing a Public Notification to property owners with an approximate 200-foot radius of the Site describing the proposed remedial actions
- Properly destroying existing soil vapor monitoring wells SV-2, SV-3, and SV-5 under permit issued by Santa Cruz County Environmental Health Services as these wells were situated within the proposed remedial excavation footprint
- Prior to beginning excavation activities, Underground Service Alert (USA) was contacted at least 48 hours in advance to identify the location of utilities that enter the property. The perimeter of the entire Site was clearly marked with white paint as required by USA.

5.2 SOIL VAPOR MONITORING WELL DESTRUCTIONS

In order to facilitate the logistics of the approved remedial excavations, we completed the permitted destruction of three (3), dual-depth soil vapor monitoring wells (SV-2, SV-3 and SV-5; see Figure 5) that were situated within the prescribed excavation areas. Prior to destruction, permit applications for well destruction were procured with Environmental Health and are included in Appendix C. Field notes and photo sheets documenting well destruction are also included in Appendix C.

On September 6, 2017, we contracted with a licensed C-57 drilling contractor (Environmental Control Associates) to properly destroy soil vapor monitoring wells SV-2, SV-3 and SV-5 as follows:

- Completely removing the sample tubing from the subsurface, intact
- Drilling out the well annulus via 6-inch diameter solid flight augers to the original borehole depth (i.e., 10.5 feet bgs)
- Completely filling the subsequent borehole with neat cement grout after confirming the borehole remained open to the original completion depth
 - Completely removing the well box, and patching the surface with concrete

Soil cuttings generated during well destruction were containerized in one 55-gallon drum at the Site and were subsequently added to soils being disposed of at Kettleman Hills Landfill during subsequent remedial excavation activities (see section 5.3.5 for details).

Department of Water Resources (DWR) Well Completion Reports documenting the well destructions were prepared and submitted to the DWR and Environmental Health on September 8, 2017.

5.3 REMEDIAL EXCAVATION ACTIVITIES

Between October 2 and 6, 2017 we contracted with a Haz-certified licensed excavation contractor (Randazzo Enterprises, Inc.) to excavate and load the impacted soils on to end dump trucks for transport to the designated landfills. Details regarding landfill pre-approval and disposal are included in Section 5.3.5 of this report. The soil was removed using standard earthmoving equipment (e.g., excavator and front-end loader).

Prior to soil removal efforts, the following existing surface features / coverings within the prescribed excavation areas were removed and hauled to appropriate recycling and/or disposal facilities:

- A cinderblock trash enclosure and associated concrete pad
- Two planter areas / tree wells including the associated landscaping
- A concrete swale
- Asphalt

All soils / base material beneath these surface features / coverings to a depth of 1.5 feet below the existing parking lot grade within the prescribed excavation areas were removed and hauled to appropriate landfills for proper disposal.

Following impacted soil removal, a delineation geotextile material (Mirafi 500X) was installed across the entire footprint of the excavation areas to serve as a visual separator between the clean cap material and the residual soil impacts. This material will serve as an indicator for potential future workers who may inadvertently penetrate the cap and expose the underlying, contaminated soils. This cap feature is described in the *Site Environmental Management Plan*.

5.3.1 Deviation from RAP

During the course of remedial excavation activities, the excavation contractor encountered a few large, intact concrete slabs beneath the parking lot within the approved remedial excavation areas. The concrete slabs are rather extensive and have good integrity (see Figure 3 and photo sheets in Appendix C documenting their locations). These concrete slabs include:

- An approximate 24 foot wide, ~6-inch thick slab spanning the southwestern portion of the remedial excavation. The slab is encountered at approximately 8-inches below existing parking lot grade at the western limits of the excavation and shallows to about 2-inches below grade from west to east as the parking lot grade slopes downward to the east. A review of historic aerial photos indicates that this concrete slab has existed at the Site since at least the 1930's and appears to have been a parking area for the adjacent business to the west (now La Rosa Supermercado).
- A large, circular foundation that matches the location of the former MGP Gas Holder at the norther portion of the parking lot (as observed in historic Sanborn Maps). This concrete slab is at

least 6-inches thick and spans a good portion of the northwestern most excavation footprint and across a portion of the larger, southern excavation footprint. The slab is encountered at depths of approximately 16-inches below existing grade, shallowing to about 8-inches below existing grade, as the grade of the existing parking lot slopes downward to the south and east.

In an email to Environmental Health dated October 4, 2017 (*Proposed Deviation from Remedial Action Plan*), we proposed leaving these large, good integrity concrete slabs in place as part of the protective cap, and to restore the parking lot over these areas to the existing grade elevation. It is our opinion that no additional benefit would have been achieved by removing these concrete slabs only to remove a few additional inches of impacted soils beneath, as they effectively create a solid, clean barrier above the residual soil impacts and achieve the goal of reducing direct exposure contact with current and future site users. All other accessible soils within the prescribed excavation areas were removed to 1.5 feet below grade as planned and approved.

Environmental Health approved this proposed deviation in their email dated October 4, 2017.

5.3.2 Surveying Activities

Prior to soil removal activities, we clearly marked out the proposed excavation footprints as shown on Figure 2 in order to accurately guide the soil removal effort. The final depth of the proposed remedial excavations (i.e., 1.5 feet below the respective Site grade) was confirmed by using standard elevation control equipment (laser transit level and string-lines).

5.3.3 Dust Control

The following dust control measures were employed to protect on-Site and off-site receptors from chemicals in soil and nuisance dust.

- Dust suppression was performed by lightly spraying or misting the work areas with water.
- During soil load-out, efforts were made to minimize the soil drop height from the excavator's bucket into the transport trucks. Misting was also used on soil placed in the transport trucks as needed. After the soil was loaded into the transport trucks, the truck beds were covered with fabric tarp to prevent soil from spilling out of the truck during transport to the disposal facility.
- All trucks were loaded at the curb side to avoid sediment being inadvertently tracked off-site via tire tracking.

5.3.4 Dust Monitoring

Dust monitoring strategies and methodologies were implemented during soil excavation activities to achieve several goals;

1. Construction Worker Health & Safety

- Minimize dust generated in the work zone during the soil removal efforts to reduce particulate inhalation and provide feedback to site personnel regarding the effeteness of dust control measures
- 2. Off-Site Health & Safety
 - Measure particulates at the down-wind perimeter of the Site. Air monitoring was conducted to
 monitor the effectiveness of dust control measures implemented during excavation and soil
 removal activities, and ensure that unacceptable levels of off-Site migration of airborne
 particulates was not occurring.

Effective dust control in the work zone was monitored by visual observation. If dust was visually observed, then dust suppression measures (i.e., wetting) were increased. In addition, particulate monitoring equipment (i.e., DustTrak 8533 Dust Monitor) was set up at the Site for continuous monitoring of particulate concentrations throughout each workday. Specifically, we deployed one monitor at the downwind perimeter of the Site to monitor potential off-site migration of dust. Predominant wind direction was determined to be to the north by deploying and observing a small windsock at the Site and the dust monitor was positioned atop the fence line along the norther property line accordingly. A Dust Action Level of 2.5 mg/m³ for respirable fraction of nuisance dust was the "not to exceed" threshold for evaluating effective dust control at the Site⁷.

Dust monitor data collected throughout each day of remedial excavation / contaminated soil removal activities (i.e., October 2 through 6, 2017) was reviewed at the end of each work day to evaluate whether or not the Dust Action Level was exceeded, and if so increased efforts were to be employed to reduce concentrations. Histograms of the collected data (i.e., one data point per minute) have been plotted for each day which are presented in Appendix D. The data confirms that the Dust Action Level was never exceeded throughout the duration of remedial excavation activities, with the exception of one sporadic, and momentary spike above the Dust Action Level during the morning of October 5, 2017. The data confirms that dust control measures were adequate in suppressing the migration of potential nuisance dust.

5.3.5 Off-Site Soil Disposal

Soils planned for removal were pre-profiled with the following landfills based on the existing Site characterization data such that soil could be loaded directly onto transport trucks during excavation activities and eliminate stockpiling:

Class III Landfill Disposal Facility - John Smith Road Landfill, Hollister, CA

⁷ The Dust Action Level is defined as ½ the OSHA Permissible Exposure Limit of the respirable fraction for particulates which is set at 5 µg/m³

 The estimated 310 yds³ (~434 tons) of non-hazardous soils was approved for disposal at this facility as Petroleum Contaminated Soils.

Class I Disposal Facility - Kettleman Hills Landfill, Kettleman Hills, CA

• The estimated 48 yds³ (~68 tons) of soils with STLC lead concentrations exceeding 5 mg/L was approved for disposal at this facility as a State hazardous waste.

Waste acceptance forms for each landfill are provided in Appendix E.

Soils were directly loaded onto end dump trucks for direct transport to the approved landfill facilities. All hazardous waste material was hauled by a licensed hazardous waste hauler.

Approximately 250 yds³ (348.52 tons) of non-hazardous soils and 60 yds³ (81.11 tons) of soil classified as a California hazardous waste were directly loaded for transport and disposal at John Smith Road Landfill and Kettleman Hills Landfill, respectively. The discrepancy in the estimated volume of non-hazardous soils (310 yds³) vs the actual volume removed (250 yds³) is a result of large concrete slabs that were encountered within the prescribed excavations as described in section 5.3.1.

Documentation of proper soil disposal (i.e., manifests and landfill receipts) are included in Appendix E.

5.3.6 Confirmation Soil Sampling & Residual Soil Impacts

The extensive Site soil characterization data set provides adequate documentation of residual soil impacts that remain at the Site following remedial excavation activities. Therefore, confirmation soil sampling following remedial excavation was not planned.

The following represent the highest concentrations of residual soil impacts exceeding applicable commercial screening thresholds that have been left in-place beneath the protective cap (see Figure 4):

- Benzo(a)pyrene Equivalent: 89.89 mg/kg detected at boring B-9 at a depth of 1.5 feet bgs
- TPH-diesel: 4,980 mg/kg detected at boring B-9 at a depth of 4 feet bgs
- TPH-motor oil: 12,350 mg/kg detected at boring B-9 at a depth of 4 feet bgs
- Lead: 356 mg/kg detected at boring B-7 at a depth of 1.5 feet bgs

5.4 SOIL CAP / SITE RESTORATION

Following completion of the prescribed remedial excavation, we subcontracted with a licensed grading and paving company (Watsonville Grading and Excavation, Inc.) to restore the parking lot as follows:

 Emplaced 15 Inches of compacted base rock into the excavation areas (i.e., recycled concrete sourced from Buena Vista Landfill, Watsonville), with the exception of areas where concrete foundations were encountered, and the thickness of base rock was emplaced accordingly to meet the prescribed sub-grade elevation

- Paved the excavation areas with 3 inches of asphaltic concrete
- Replaced a concert swale that channels parking lot surface water to a storm drain inlet along E.
 Fifth Street
- Replaced a concrete pad for the trash enclosure that is situated at the northwestern corner of the site
- Applied a slurry seal to the unaffected areas of the parking lot to improve asphalt pavement integrity and minimize surface water infiltration
- Replaced parking blocks and striped parking spaces
- As previously noted, two existing planter areas that were removed as part of remedial excavation
 activities were not replaced, but were paved over in order to eliminate future contact with
 impacted soils beneath these locations.

6.0 CONCLUSIONS

In addition to documenting the successful completion of regulatory approved remedial actions in this completion report, we have prepared the following draft documents for Environmental Health review and approval:

- 1. An *Environmental Site Management Plan* documenting the location of residual soil impacts and protective cap, including requirements for annual cap inspections, such that the long-term stewardship of the protective cap can be maintained, and
- 2. A Covenant and Environmental Deed Restriction of Property documenting the residual soil impacts and restricting the property for commercial use only, which will ultimately be recorded in the Official Records of the County of Santa Cruz

7.0 RECOMMENDATIONS

As required by Environmental Health, we recommend completing one more round of soil vapor and groundwater monitoring in general accordance with our regulatory approved Proposed Semi-Annual Groundwater and Soil Vapor Monitoring, dated March 6, 2017 (post-remedial action sampling schedule to be determined following consultation with Environmental Health). If results of soil vapor and groundwater concentrations continue to confirm no significant risk to site receptors or to the environment, we will recommend cessation of monitoring followed by soil vapor monitoring well destruction and No Further Action for the Site.

8.0 LIMITATIONS

Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic and engineering principles and practices. This warranty is in lieu of all others, either express or implied. The analysis and conclusions in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modification of the opinions expressed herein.

All work related to this investigation and remediation at this Site is done under the direct supervision of a Professional Geologist or Engineer, registered in California, and experienced in environmental assessment and remediation.

Thank you for this opportunity to participate in the environmental assessment of this Site. If you have any questions or comments regarding this project, please contact us at our offices.

Sincerely yours,

WEBER, HAYES AND ASSOCIATES

A California Corporation

NAL JERED M. CHANE In 8459 OFCAL

And:

Pat Hoban PG Senior Geologist

By:

Jered Chaney, PG Project Geologist

9.0 REFERENCES

PREVIOUS ENVIRONMENTAL REPORTS PREPARED FOR:

Former Watsonville-1 Manufactured Gas Plant - 618 Main Street, Watsonville

Draft Screening Levels for Chemicals in Soil Gas, Sub-Slab Soil Gas, and Indoor Air, Iris Environmental, dated September 29, 2009.

Contingency Plan for Soil Gas Sampling, Terra Pacific Group, dated September 30, 2009.

Final Removal Action Completion Report, Terra Pacific Group, dated October 27, 2011.

Vapor Extraction Pilot Study Results, Terra Pacific Group, dated December 21, 2011.

April 2015 Groundwater and Soil Gas Monitoring Report, Terra Pacific Group, dated June 20, 2015.

25 East Fifth Street, Watsonville

- Preliminary Assessment of Potential Historic Land Use Impacts, Weber, Hayes and Associates, dated December 10, 2009.
- Preliminary Soil and Groundwater Assessment, Weber, Hayes and Associates, dated July 29, 2010

Work Plan for Additional Site Assessment, Weber, Hayes and Associates, dated January 13, 2016

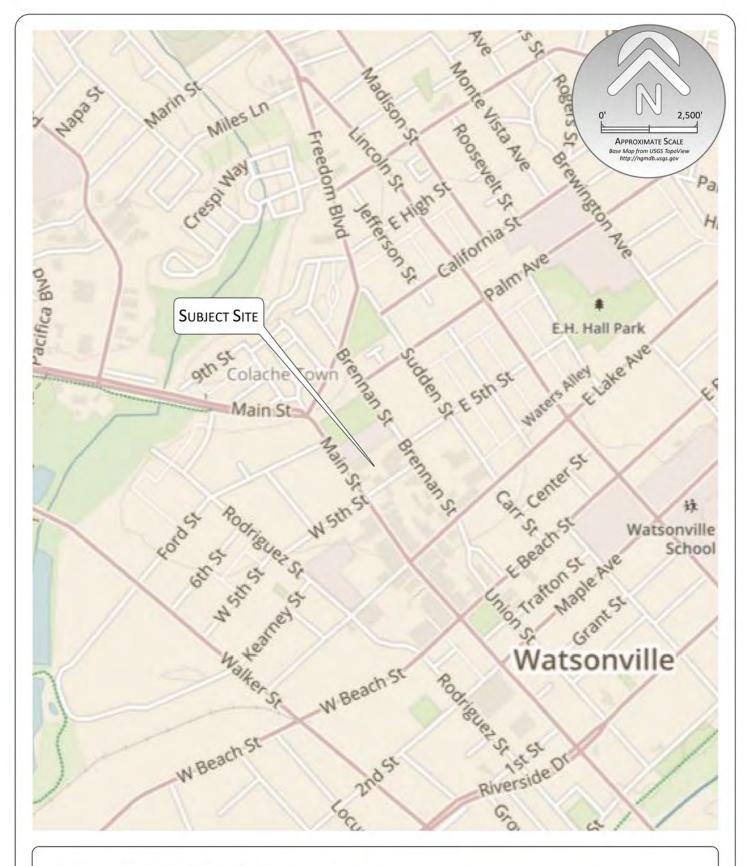
Proposed Semi-Annual Groundwater and Soil Vapor Monitoring, dated March 6, 2017

Feasibility Study & Remedial Action Plan (includes Results of Semi-Annual Grab Groundwater and Soil Vapor Monitoring – First Half 2017), dated June 21, 2017

REGULATORY CORRESPONDENCE FOR 25 EAST FIFTH STREET, WATSONVILLE:

- Letter Directive: Response to Preliminary Soil and Groundwater Assessment (Request for Work Plan), County of Santa Cruz Health Services Agency, dated December 15, 2016
- Email Correspondence: Request for additional soil analysis and Work Plan approval, County of Santa Cruz Health Services Agency and Weber, Hayes and Associates, dated April 7, 2016
- Email Correspondence: Testing for Ammonia as Nitrogen (response to regulatory concerns that this may be a contaminant of potential concern), County of Santa Cruz Health Services Agency and Weber, Hayes and Associates, dated May 4, 2016
- Email Correspondence: Results update and Request to install Soil Data Gap Borings, Weber, Hayes and Associates, dated July 6, 2016 (request approved by County of Santa Cruz Health Services Agency on July 26, 2016)
- Letter Directive: Response to Additional Site Assessment (Request for Feasibility Study & Remedial Action Plan), County of Santa Cruz Health Services Agency, dated February 24, 2017

Letter Directive: Response to Proposed Semi-Annual Groundwater and Soil Vapor Monitoring), County of Santa Cruz Health Services Agency, dated March 8, 2017


- Email Correspondence: Results update and Results of Follow-up Soil Vapor (SV) Sampling & Request to Destroy Three SV Wells to Accommodate Upcoming Remedial Excavation Activities, Weber, Hayes and Associates, dated August 23, 2017 (request approved by County of Santa Cruz Health Services Agency on August 28, 2017)
- Letter Directive: Response to Feasibility Study and Remedial Action Plan and Associated Documents, County of Santa Cruz Health Services Agency, dated August 31, 2017
- Email Correspondence: Proposed Deviation from Remedial Action Plan, Weber, Hayes and Associates, dated October 4, 2017 (request approved by County of Santa Cruz Health Services Agency on August 4, 2017)

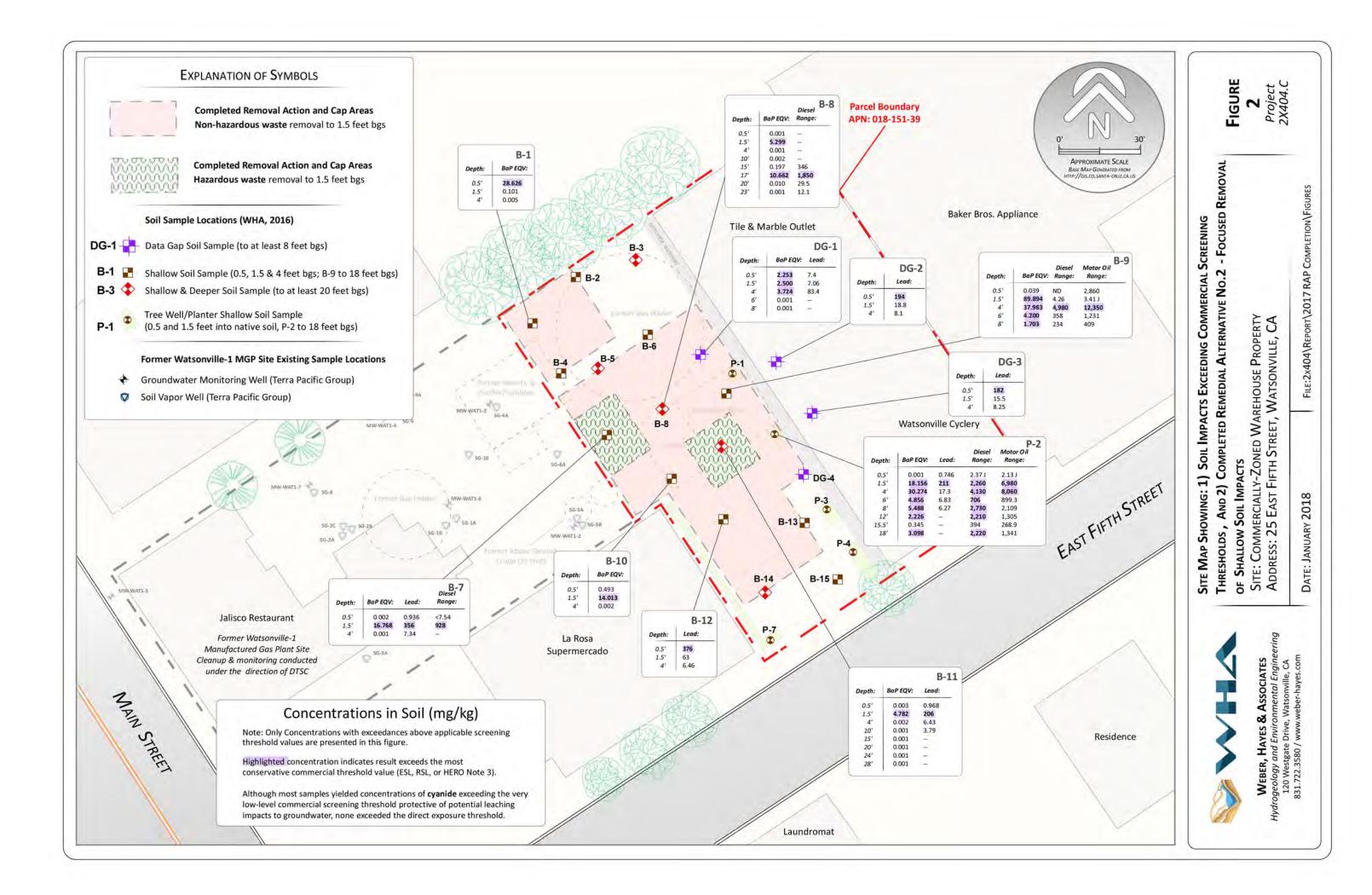
Feasibility Study & Remedial Action Plan 25 East Fifth Street, Watsonville June 2017 / Project: 2X404

FIGURES

FIGURE 1: Location Map

- FIGURE 2: Site Map showing: 1) Soil Impacts Exceeding Commercial Screening Thresholds, and 2) Completed Remedial Alternative No. 2 – Focused Removal of Shallow Soil Impacts
- FIGURE 3: Site Map showing Completed Remedial Excavation and Cap Areas & Intact Concrete Slabs Encountered Beneath Parking Lot
- FIGURE 4: Site Map showing: 1) Protective Soil Cap Areas, and 2) Residual Soil Impacts Exceeding Commercial Screening Thresholds
- FIGURE 5: Site Map Showing Existing & Destroyed Dual Depth Soil Vapor Monitoring Well Locations

WEBER, HAYES & ASSOCIATES Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 831.722.3580 / www.weber-hayes.com


LOCATION MAP

SITE: COMMERCIALLY-ZONED WAREHOUSE PROPERTY Address: 25 East Fifth Street, Watsonville, CA

DATE: SEPTEMBER 2015

REVISIONS/NOTES:

FIGURE 1 Project 2X404

EXPLANATION OF SYMBOLS

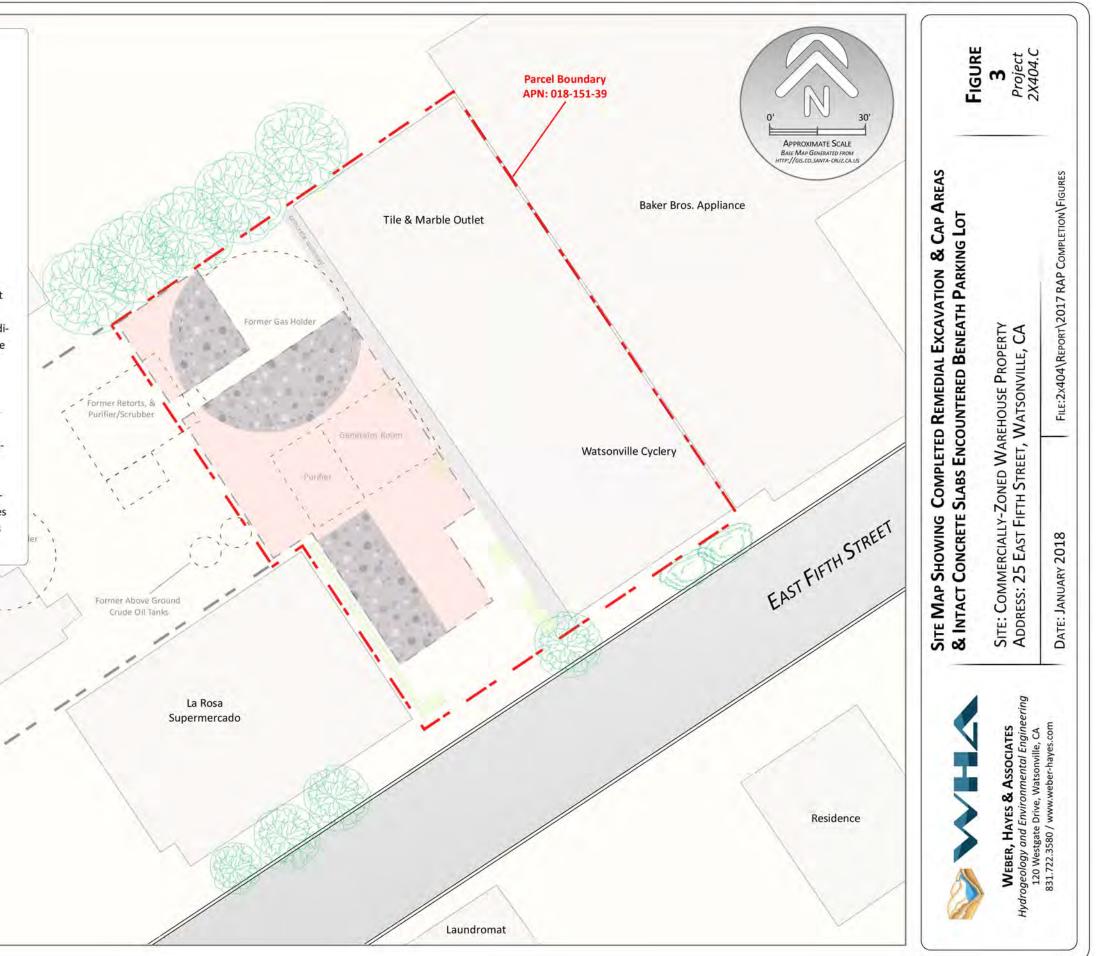
Completed Remedial Excavation & Cap Areas (1.5 foot thick protective cap)

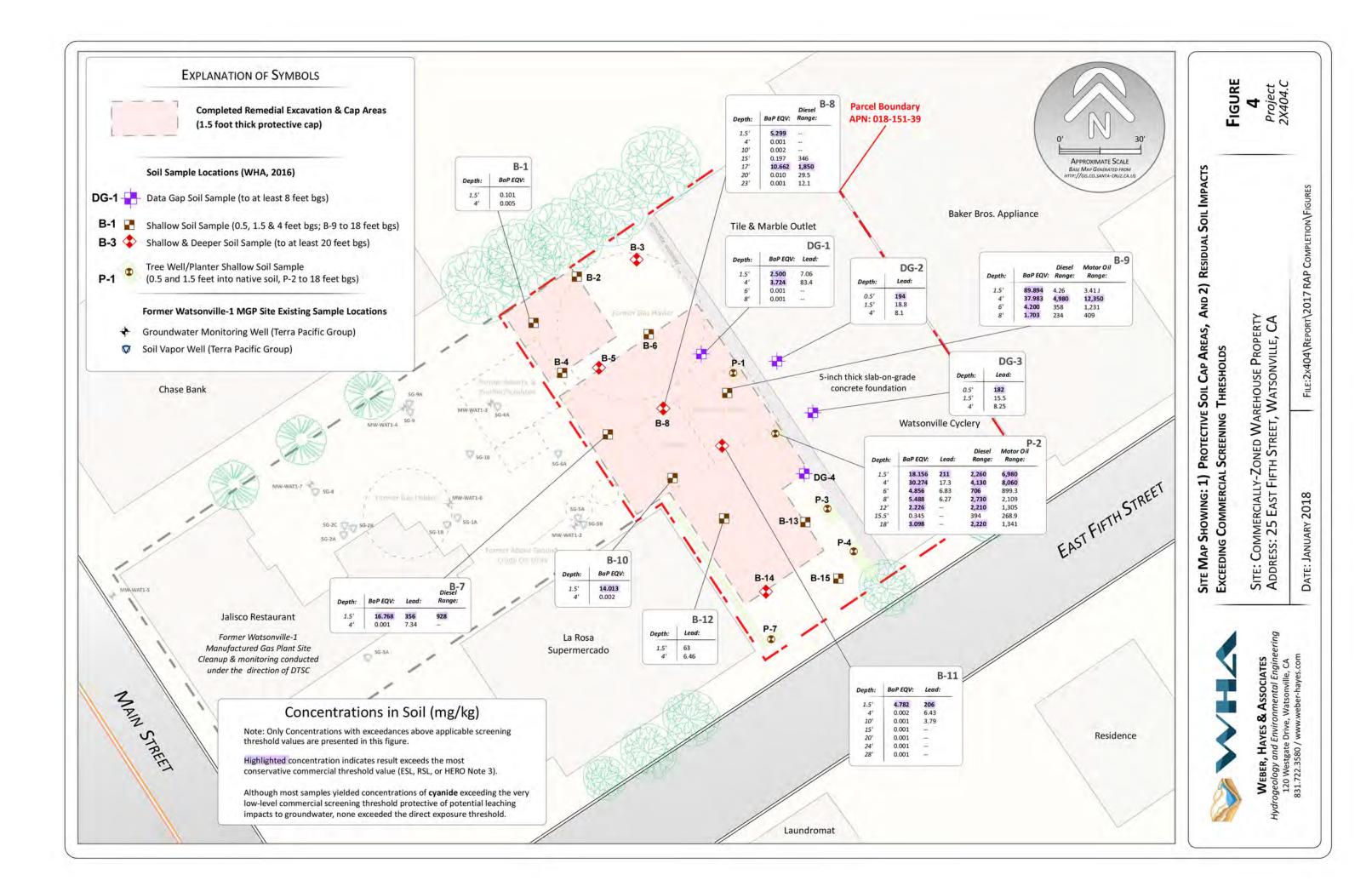
RAP Deviation: Left In-place, Intact Concrete Slabs Encountered Beneath Asphalt & Base Rock

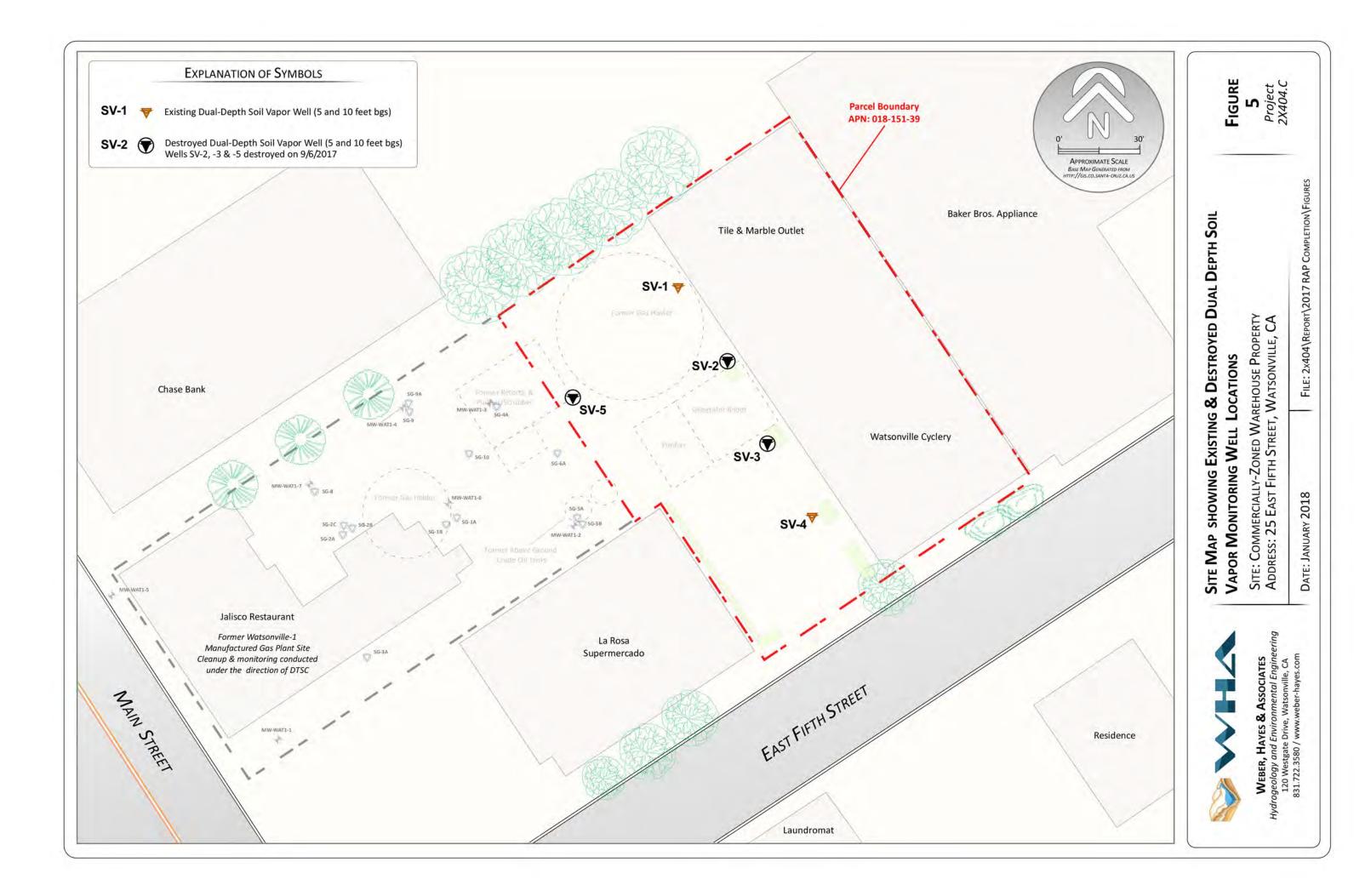
These concrete slabs include:

1) An approximate 24 foot wide, ~6-inch thick slab spanning the southwestern portion of the remedial excavation. The slab is encountered at approximately 8-inches below existing parking lot grade at the western limits of the excavation and shallows to about 2-inches below grade from west to east as the parking lot grade slopes downward to the east. A review of historic aerial photos indicates that this concrete slab has existed at the Site since at least the 1930's and appears to have been a parking area for the adjacent business to the west (now La Rosa Supermercado).

2) A large, circular foundation that matches the location of the former MGP Gas Holder at the norther portion of the parking lot (as observed in historic Sanborn Maps). This concrete slab is at least 6inches thick and spans a good portion of the northwestern most excavation footprint and across a portion of the larger, southern excavation footprint. The slab is encountered at depths of approximately 16-inches below existing grade, shallowing to about 8-inches below existing grade, as the grade of the existing parking lot slopes downward to the south and east.


> Jalisco Restaurant Former Watsonville-1


Manufactured Gas Plant Site


Cleanup & monitoring conducted

under the direction of DTSC

MAIN STREET

Feasibility Study & Remedial Action Plan 25 East Fifth Street, Watsonville June 2017 / Project: 2X404

APPENDIX A

SITE DESCRIPTION & SUMMARY OF PREVIOUSLY COMPLETED SOIL & GROUNDWATER ASSESSMENTS

25 East Fifth Street, Watsonville, CA

WEBER, HAYES & ASSOCIATES

Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

SITE DESCRIPTION & BACKGROUND

The subject property is located in a commercially zoned area near the corner of Main Street and East Fifth Street in the city Watsonville, California (see Site Map, Figure 1). The Site consists of one warehouse structure (currently being leased by Watsonville Cyclery and Tile & Marble Outlet), a parking area and limited landscaping (see Site Map, Figure 2).

LOCAL HYDROGEOLOGIC SETTING

The Site is located on flood plain deposits, which consists of unconsolidated, fine-grained sand, silt, and clay. Underlying these flood deposits are terrace deposits consisting of semi-consolidated, moderately to poorly sorted silt, sand, silty clay, and gravel. Nearly twenty-five years of water level gauging data collected from the adjacent chemical release investigation site (618 Main Street, Watsonville) indicates groundwater levels have fluctuated widely from approximately 16 to 33 feet bgs⁸.

HISTORICAL BACKGROUND

In 2010, Weber, Hayes and Associates (WHA) completed a *Preliminary Assessment of Potential Historic Land Use Impacts* for the Site⁹. Historical maps and regulatory documents revealed that the Site was previously used as a Manufactured Gas Plant (MGP) from 1871 to 1908. The Site was part of a larger parcel, which housed the Watsonville-1 MGP, Watsonville-2 MGP, and later owned and subdivided by Coast Counties Gas & Electric Company in 1931. Subsequently, the Site involved a variety of automotive uses including sales, storage, and repair businesses. As noted, the commercial Site currently contains a commercial warehouse and a paved parking lot.

Research of previous investigations at the adjacent commercial zoned restaurant parcel to the west (618 Main Street, Jalisco Restaurant) has documented evidence of soil and groundwater contamination that is associated with the same manufactured gas plant that operated on the subject Site. The adjacent site characterization and cleanup activities have been ongoing since approximately 1986 and investigation is currently under the direction of the California Department of Toxic Substances Control (DTSC). Additional

⁸: Terra Pacific Group: April 2015 Groundwater and Soil Gas Monitoring Report – Former Watsonville-1 Manufactured Gas Plant, Dated June 20, 2015

⁹: WHA: Preliminary Assessment of Potential Historic Land Use Impacts, 25 East Fifth Street, Watsonville, dated December 10, 2009.

details, including electronic copies of previous reports can be obtained at the State GeoTracker database website¹⁰.

SUMMARY OF PREVIOUSLY COMPLETED PRELIMINARY SOIL AND GROUNDWATER ASSESSMENT (2010)

The results of a previously completed *Preliminary Soil and Groundwater Assessment*¹¹ have revealed the following:

Soil Results (see Figure 3 & Tables 1 & 2):

Drilling observations from collected soil cores indicate there is approximately 3-4 feet of non-native fill materials across the Site (fill sand/gravels/base rock). Based on these observations, 4-point composite samples were obtained from the fill (at a depth of 1 feet bgs) and immediately beneath the fill (at a depth of 4 feet bgs) to assess potential impacts. Laboratory results indicate the shallow soils consistently contained elevated levels of Polynuclear Aromatic Hydrocarbon (PAHs) compounds at both sampling elevations (i.e., 1 foot and 4 feet bgs). In addition to the detection of PAHs, there were also some low-level detections of motor oil range total petroleum hydrocarbons.

Deeper soils (to 30 feet bgs) were examined at four (4) exploratory boring locations on the Site. Soil discoloration and chemical odors were observed only in the soil core collected at DP-7, positioned just south of the former MGP's infrastructure (see Figure 3). "Black oily gobs" and strong hydrocarbon odor were observed to be limited to a relatively thin lens at 22 to 23 feet bgs, just above first encountered groundwater at 24 feet bgs. No other obvious soil impacts were observed in any of the other seven shallow or deeper borings. Laboratory-analyzed soil samples were collected from DP-7 at elevations above (@ 20 ft), within (@ 22 ft), and below (@ 24 ft) the lens of dark oily material. The results show that PAH and motor oil range total petroleum hydrocarbons was limited to the visually impacted lens, at concentrations exceeding regulatory threshold limits.

Field observations noted 3-4 feet of fill materials in the majority of the exploratory borings. Laboratory results of shallow soil testing from 1) within the fill soils, and 2) in native soils immediately below the fill materials, indicate both zones are impacted with concentrations of "aged" petroleum hydrocarbons and PAHs in soil that exceed regulatory screening levels. It appears that the upper fill materials are less impacted than the lower native soils (see Tables 1 and 2). Note: there were no obvious chemical odors or soil discoloration noted in shallow soils during soil coring operations.

¹⁰: <u>http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=SLT3S1091318</u>

¹¹ WHA report: Preliminary Soil and Groundwater Assessment, 25 East Fifth Street, Watsonville, CA, dated July 29, 2010

These types of contaminant compounds (i.e., PAH and TPH) have also been detected in the adjoining parcel restaurant parcel to the west (618 Main Street), which shared the same MGP footprint. This adjacent site has been undergoing characterization and cleanup activities since approximately 1986.

Groundwater Results (see Figure 3 & Table 3):

Grab groundwater samples were collected and analyzed from the 4 deeper exploratory borings. None of the tested groundwater contained elevated concentrations of chemicals of potential concern that exceeded regulatory Water Quality Goals established by the California Regional Water Quality Control Board, Central Coast Region (Water Board). The laboratory results did note, however, a trace detection of Total Petroleum Hydrocarbons in the range of gasoline (TPH-gasoline) in the groundwater sample collected from the aforementioned soil-impacted boring (DP-7). Specifically the State-certified laboratory detected 150 μ g/L of weathered TPH-gasoline (see Figure 4 and Table 3). The Water Quality Goal for TPH is 1,000 μ g/L. None of the four collected groundwater samples contained concentrations of chemicals of potential concern exceeding established regulatory Water Quality Goals.

SUMMARY OF PREVIOUSLY COMPLETED ADDITIONAL SITE ASSESSMENT (2016)

The previously completed Additional Site Assessment (ASA)¹² was designed to provide sufficient characterization of subsurface conditions with the goal of quantifying potential human health risks for commercial land use, and ultimately to propose a plan that effectively separates any residual soil/soil vapor impacts from current and future tenants leasing the property.

COMPLETED SCOPE OF CHARACTERIZATION SAMPLING

The scope of work completed for the ASA included:

Soil Characterization (see Figures 2 through 5): Installation of fifteen (15) shallow (i.e., 4-feet deep) soil borings throughout the Site to provide sufficient vertical and lateral definition of shallow soil chemical impacts previously detected beneath the Site (B-1 through B-15). Five (5) of these borings extended to depths of 20 to 30 feet below the ground surface (bgs) to collect data on deeper soil chemical impacts (B-3, B-5, B-8, B-11, and B-14). Five (5) shallow (i.e., 0.5 and 1.5 feet deep) soil samples were also collected from native soils within all tree well / planter areas (P-1 through P-4 and P-7). In addition, following receipt of initial soil sample analytical results, we installed four (4) "data gap" soil borings (DG-1 through DG-4) to depths of 8 feet bgs and advanced borings B-9 and P-2 to depths of 8 and 18 feet, respectively, in order to provide better vertical and lateral definition of detected soil impacts.

¹² WHA report: Results of Additional Site Assessment, dated November 23, 2016

- Groundwater Characterization (see Figure 12): Collected grab groundwater samples from five (5) locations throughout the Site (GW-1 through GW-5) in order to provide additional data on previously detected low-level chemical impacts to groundwater.
- Soil Vapor Characterization (see Figure 13): Installed and sampled five (5) permanent dual-depth (i.e., 5 and 15 feet bgs) soil vapor sample points (SV-1 through SV-5) to assess potential soil vapor intrusion concerns (see Figure 13).

EVALUATION OF COLLECTED SOIL, GROUNDWATER AND SOIL VAPOR MEDIA

When making human/ecological health and safety risk management decisions, the Santa Cruz County Environmental Health Services Agency (SCC-EHS) defers to the most conservative of multiple screening thresholds (concentrations) established by various State and Federal guidelines. Risk-based screening thresholds vary based on land use (i.e. residential vs. commercial / industrial land-use scenarios). At a minimum, the SCC-EHS requires evaluation of sample media with residential and/or commercial/industrial thresholds, specifically: 1) the Water Board's Tier 1 Environmental Screening Levels (ESLs), 2) the Federal USEPA Region 9 Regional Screening Levels (RSLs), and 3) the State DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment "Note 3" screening values.

In addition, soil vapor sample analytical results were compared with the *Risk Based Soil Gas Screening Levels (RBSLs)* developed for the adjacent Jalisco Restaurant property. Although specific vapor intrusion risk model inputs used to develop the RBSLs for soil vapor at the Jalisco Restaurant property likely vary somewhat from Site specific conditions, these RBSLs provide first blush order of magnitude information regarding potential risks for the commercial receptors at the Site.

RESULTS OF ADDITIONAL SITE ASSESSMENT

On May 3 through 6, 2016, soil borings B-1 through B-15, P-1 through P-4 and P-7 were installed and soil samples were collected for laboratory analysis in accordance with the approved *Work Plan*. Grab groundwater samples GW-1 through GW-5 were also obtained during this mobilization, and permanent dual depth soil vapor sample points SV-1 through SV-5 were installed. Soil vapor sampling was conducted on May 11 and 12, 2016. In addition, on August 18, 2016, data gap soil borings DG-1 through DG-4 were installed and soil samples were collected for laboratory analysis. Previous sample locations B-9 and P-2 were also advanced to deeper depths during the August 18 mobilization to obtain deeper soil samples for laboratory analysis.

Soil Characterization

Selected soil analysis and analytical results are presented on Tables 1 through 3 and Figures 2 through 5. In general, the extensive soil characterization identified relatively shallow (i.e., approximately 2-4 feet below grade) polynuclear aromatic hydrocarbons (PAHs), and to a much lesser extent Total Petroleum Hydrocarbons as diesel/motor oil (TPH-d/mo) and/or lead concentrations exceeding applicable commercial screening thresholds which correlate with the historic MGP infrastructure footprint (i.e., central to northwestern portion of the parking lot), with deeper PAH and TPH-d/mo soil impacts that appear to originate in the vicinity of boring P-2 (adjacent to the former MGP generator room) as evidenced by black soil discoloration and associated strong hydrocarbon-like odors persisting from approximately 6.5 feet to 15 feet below the ground surface (bgs). The impacts observed at boring P-2 appear to migrate laterally and deeper to borings B-8, B-11 and DP-7 (DP-7 installed in 2010) as evidenced by a lens of soil discoloration/odor at progressively deeper depths to the west-southwest of boring P-2 (see Figure 7; Geologic Cross Sections). Boring B-9 (near impacted boring P-2) also exhibited deeper PAH impacts to at least 8 feet bgs. The most significant soil impacts are observed at borings B-9 and P-2.

The well-defined areal extent of soil impacts within the parking lot is approximately 6,000 square feet (see Figure 11).

Groundwater Characterization

Grab groundwater sample analysis and analytical results are presented on Tables 4 and 5 and Figure 12. Concentrations of PAHs (including naphthalene), TPH-diesel and cyanide (GW-3 only) exceeding conservative groundwater ESLs were limited to borings GW-1 and GW-3 (along the western property line with Jalisco Restaurant), with only a slight exceedance of naphthalene detected in upgradinet boring GW-2. Similar order of magnitude groundwater concentrations detected in the Jalisco Restaurant property monitoring well network correlate with these detections, indicating a relatively small, low-concentration groundwater plume.

We note that nearly 25 years of groundwater monitoring at the hydraulically downgradient Jalisco Restaurant property has confirmed that the dissolved plume is stable and not migrating. Semi-annual grab groundwater sampling is currently being conducted to confirm this.

Soil Vapor Characterization

Soil vapor sample analysis and analytical results are presented on Table 6 and Figure 13. VOC sample analytical results revealed no exceedance above applicable commercial screening thresholds, and were several orders of magnitude below the *Risk Based Soil Gas Screening Levels* (RBSLs) developed for the adjacent Jalisco Restaurant property, with the exception of 1,2-Dibromoethane (a.k.a EDB) detected at a concentration of 99 μ g/m³ in sample SV-3 at 10 feet below grade, which is above the California DTSC Modified Soil Gas Screening level ("near-source") set at 20 μ g/m³. The sample collected at 5 feet bgs at this location was non-detect for this compound.

Based on these initial results there does not appear to be a soil vapor intrusion risk for the Site. Semiannual sampling is currently being conducted to confirm this. Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

RESULTS OF SEMI-ANNUAL GROUNDWATER & SOIL VAPOR MONITORING

Groundwater Monitoring

Based on the localized extent of observed groundwater impacts at the Site, grab groundwater samples were obtained on March 22, 2017 from previous sample locations GW-1, GW-2 and GW-3 by installing temporarily cased boreholes ranging in depth from 27 to 29 feet bgs. The sample obtained from GW-2 serves as a "clean" upgradient monitoring point and samples obtained from GW-1 and GW-3 serve as downgradient, property line monitoring points. The grab groundwater samples were submitted to a State-certified laboratory for the following analysis:

- PAHs by EPA Method 8270SIM
- TPH-diesel and TPH-motor oil by EPA Method 8015B
- TPH-gas and BTEX/MTBE and 1,2-dibromoethane by EPA Method 8260B
- Total cyanide by EPA Method 9012
- Ammonia as nitrate by EPA Method 350.2Results are tabulated on Tables 4 & 5 of this Appendix. In general, results are fairly similar to the May 2016 sample results. There were limited exceedances in the groundwater samples, specifically from borings GW-1 and GW-3 obtained from along the western property line adjoining the Jalisco Restaurant property. Contaminant compounds exceeding the conservative *Environmental Screening Levels (ESLs)* included PAHs (including naphthalene), TPH-gas and -diesel, and cyanide (GW-3 only) there were no current exceedances in upgradient boring GW-2. Note: there have been similar order of magnitude groundwater concentrations detected in the Jalisco Restaurant property monitoring well network, indicating a relatively small and stable, low-concentration groundwater plume (see Figure 2).

Soil Vapor Monitoring

A second round of soil vapor sampling was attempted on March 30, 2017 at all five (5) Site soil vapor wells (SV-1 through SV-5; see Figure 3); however, "no flow" conditions were encountered at most of the deeper sample ports (10-ft) and one shallow port (5-ft)¹³. Specifically:

- SV-1 at 10 feet (water observed in sample tubing during purge)
- SV-2 at 10 feet (down hole vacuum > 7.5 inches Hg)
- SV-3 at 5 and 10 feet (down hole vacuum > 7.5 inches Hg)

¹³ These sample locations were checked again for flow conditions on May 17, 2017. A peristaltic pump was connected to the sample tubing at each location to gauge flow and check for the potential presence of water and it was confirmed that each sample point contained small volumes of water (~100 +/- mL).

• SV-4 at 10 feet (down hole vacuum > 7.5 inches Hg)

Soil vapor monitoring ports having flow were collected on March 30, 2017, and submitted to a Statecertified laboratory for volatile organic compound air analysis (VOC analysis by EPA MethodResults are tabulated in Table 6 of this Appendix. The VOC sample analytical results from these soil vapor monitoring points continued to confirm no exceedance above applicable commercial screening thresholds, with the exception of benzene detected in sample SV-1 (5-foot depth) at a concentration of 69 µg/m³, which is slightly above the US EPA Regional Screening Level set at 53 µg/m³. Benzene was previously not detected at this location (<5.9 µg/m³), nor was it previously detected in nearby shallow soil samples (B-3 and B-6 positioned ~15-20 feet away). All detected concentrations were several orders of magnitude below the Risk Based Soil Gas Screening Levels (RBSLs) developed for the adjacent Jalisco Restaurant property (details presented on Table 6). A previous detection of 1,2-Dibromoethane (aka: EDB) at a concentration of 99 µg/m³ in sample SV-1 at 10 feet below grade during the May 2016 sampling event has been the only slightly elevated VOC concentration detected at the Site, which was above the California DTSC-Modified Soil Gas Screening level ("near-source") set at 20 µg/m³. We note that grab groundwater samples collected and analyzed for 1,2-Dibromoethane during the current monitoring period revealed no detections of this compound indicating there is no significant source of this compound present at the Site.

Soil vapor sampling at locations that were not collected during the first semi-annual sampling event of 2017 (March 30, 2017) due to no flow conditions were sampled on August 8, 2017. Specifically, sampling was conducted at the following locations:

- SV-1 at 10-feet: Well had good flow no issues during sample collection
- SV-2 at 10-feet: Well had good flow. A water droplet was observed in the sample tubing 4
 minutes into sampling. Peristaltic pump used in an attempt to evacuate the water droplet with
 no success. Sampling continued and sampling canister successfully filled.
- SV-3 at 5-feet: Well had low flow "milked" volume required by allowing down hole vacuum to equilibrate, the reapplying canister vacuum to obtain adequate sample volume. This was repeated 7 times over the course of ~1.5 hours
- SV-3 at 10-feet: Unable to obtain sample due to "no flow" conditions water observed in sample tubing.
- SV-4 at 10-feet: Well had good flow no issues during sample collection

VOCs were not detected above laboratory Method Detection Limits in any of the collected samples (see Table 6). Quantitative leak detection monitoring confirms no detectable leaks during sample collection. These results are very similar the initial, non-detectable concentrations of VOCs observed for these locations in May 2016, with a few exceptions:

- The elevated concentration of 1,2-Dibromoethane detected at SV-1 @ 10 feet (99 ug/m³) was not detected (<2.9 ug/m³) during the current sampling event.
 - Relatively low-level concentrations of BTEX (below CA DTSC-Modified Soil Gas Levels) were
 detected in May 2016 at SV-3 at 10 feet. To date we have not been able to confirm these initial
 detections due to no flow conditions. However, we note that two rounds of sampling from the 5
 foot depth at this location has confirmed trace to non-detectable concentrations of VOCs below
 commercial CA DTSC-Modified Soil Gas Levels.

Tables and Figures

Preliminary Soil and Groundwater Assessment, Weber, Hayes and Associates, dated July 29, 2010

Table 1: Soil Sample Analytical Results - June 29, 2010 Polynuclear Aromatic Hydrocarbons Phase II Environmental Site Assessment 25 East Fifth Street, Watsonville, California

Sample	Sample	Sample				_					Polynuclear Ard									_	
dentification	Туре	Depth (ft, bgs)	Naphthalene	2-Methyl naphthalene	1-Methyl naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,I) perylene	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Benzo(a) pyrene	Indeno(1,2,3-cd) pyrene	Dibenzo(a,h) anthracene	Benzo(a)pyrene Equivalent ⁽²⁾
		20.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.032	< 0.065	< 0.032	< 0.032	< 0.032	< 0.032	< 0.032	0.037
DP-7	discrete	22'	150	100	86	38	15	68	85	52	50	43	13	29	20	29	7.5	17	17	9.3	33.05
		24'	0.29	0.13	0.27	0.16	0.068	0.33	0,32	0.26	0.29	0.25	0.075	0,18	0,12	0.17	0.045	0.10	0.091	0.049	0,190
DP-(1,2,3,4)	composite	1'	0.11	0.049	0.039	ND	ND	0.039	0.059	0.033	0.063	0.059	0.089	0.048	< 0.065	0.10	< 0.032	0.054	0.089	0.038	0.109
	composite	4'	¹ 0.043	¹ 0.037	¹ 0.029	0.15	¹ 0.030	¹ 0.053	0.51	0.41	3.2	2.8	1.5	2.3	1.7	3.2	0.95	1,6	1.9	0.54	2.802
DP-(5,6,7,8)	composite	1,	< 0.06	¹ 0.051	< 0.04	< 0.04	< 0.04	0.046	< 0.05	< 0.06	< 0.06	< 0.05	0.35	< 0.08	< 0.05	/ 0.084	< 0.03	/ 0.064	< 0.03	¹ 0.12	0.102
	composite	4'	< 0.06	¹ 0.12	¹ 0.099	0.25	¹ 0.083	¹ 0.089	0.15	0.33	3.0	3.8	2.9	4.1	' 3.0	5.9	1.2	3.4	3.2	0.94	5.475
	Practical Quantitation Limit (P	Pal)	0.0327	0.0327	0.0327	0,0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0657	0,0327	0.0327	0,0327	0.0327	0,0327	-
	ironmental Screening Le <u>SHALLOW</u> Soils (< 10 ft) (Residential / Commerci ironmental Screening Le) ⁽¹⁾ : cial)	1.2/1.2	0.25 / 0.25	0.25 / 0.25	13/13	16/16	8.9 / 8.9	11/11	2.8/2.8	40 / 40	85/85	27 / 27	0.38/1.3	3.8/13	0.38 / 1.3	0.38 / 1.3	0.038 / 0.13	0.38 / 1.3	0.11 / 0.38	0.038 / 0.13 *
	DEEP Soils (> 10 ft) (1) (Residential / Commerce):			1						60 / 60										
	USEPA Region 9 ional Screening Levels (i [Residential / Commerce		3,8 / 17	e	÷	-	360 / 4,500	240 / 3,000	-	1,800 / 23,000	240 / 3,000	180 / 2,300	~	0.16 / 2.9	16 / 290	0.16 / 2.9	1.6 / 29	0.016 / 0.29	0.16 / 2.9	0.016 / 0.29	0.016 / 0.29*
	man and Ecological Risk n Health Risk Assessmer		-	8	-	-		12	-		-	-	-	-	3.9/13	÷	0.39 / 1.3	-		-	ŵ
			1						k							4			DTSC PAH Study (2009) ⁽⁴⁾ 95th Percentile BaP Equiv		0.9

FOOTNOTES & NOTES:

1: Environmental Screening Levels (ESLs): from California Regional Water Quality Control Board - San Francisco Bay Region guidance document: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (interim Final, November 2007, Revised May 2008). The ESLs are intended to provide guidance on whether or not remediation of detected contamination is warranted. The ESLs used for this table were obtained from Table A. Shallow Soils (<3m) & Table X. Shallow Soils (<3m)

Residential / ESLs for Residential or Commercial land uses: ESL screening limit concentraction are presented in BROWN for Residential land uses and in Green for Commercial/Industrial land uses. One number indicated the ESL is the same for both Residential and Commercial.

2: Seven of the PAHs are recognized to by the US EPA to cause cancer. The most potent carcinogen of these seven is benzo[a]pyrene. In calculating benzo[a]pyrene. In calculating benzo[a]pyrene. In calculating benzo[a]pyrene. The toxicity equivalent factor. This factor describes how carcinogenic it is relative to benzo[a]pyrene. In calculating benzo[a]pyrene, giving a toxicity-equivalent (BaP-equiv) concentrations, the concentration of each PAH is multiplied by its toxicity equivalent factor. The resulting weighted concentrations are summed to calculate the BaP-equiv carcinogenic PAH value.

3: Regional Screening Levels (RSLs): from the USEPA Region 9 RSL Tables (updated January 2015), and the User's Guide (November 2014). The RSLs are risk-based screening levels used for screening sites, calculating risk factors and potentially as cleanup goals once a site has been characterized.

4: DTSC Advisory - Use of the Northern and Southern California Polynuclear Aromatic Hydrocarbon (PAH) Studies in the Manufactured Gas Plant Site Cleanup Process (July 1, 2009): Page 8, Establishing a Practical Target to Guide Soil Excavation/Remediation: A value of 0.9 milligrams per kilogram (mg/Kg) in BaP equivalents can be used as a pragmatic target for guiding soil excavation/remediation. This value corresponds to upper bounds of the ambient data sets. Experience at various MGP site has shown that removal/remediation of soil areas and hotspots exceeding 0.9 mg/Kg BaP equivalents is a reasonably conservative guide for the main phase of excavation/remediation activities.

* = There is no screening value for B(a)P equivelent. Results compared against screening values for Benzo(a)pyrene for reference only.

- z Sample(s) not analyzed for this constituent and/or method because the soil sample immediately above it was either non detect for the same compound or was below the residential ESL value established at the time of the investigation.

BOLD BLUE FONT = Indicates soil sample concentration exceeds the most conservative of all the screening levels (ESLs).

J: Reporting limits increased due to the nature of the sample matrix (dark color extract). Values detected between the MDL and RL should be considered as estimated and would be flagged with a "J" qualifier.

Table 2: Soil Sample Analytical Results - June 29, 2010

Total Petroleum Hydrocarbons, Volatile Organic Compounds and Metals

Phase II Environmental Site Assessment

25 East Fifth Avenue, Watsonville, California

All soil sample results are in parts per million (mg/kg).

Soil	Sampling Informa	ition						Lab	oratory Analytic	cal Results					
the second second	Sample		Total Pet	roleum Hydr	ocarbons		Volatile Or	ganic Compour	ds (VOC's by EP	A 8260)		-		Metals	
Sample Identification	Type (discrete or	Sample Depth (feet, bgs)	Extrac (w/ silica g		Gasoline	Benzene	Toluene	Ethyl-	Xylene	МТВЕ	8010 Solvents	Arsenic	Lead	Hexavalent Chromium	Cyanide
	composite)		Motor Oil	Diesel			1.1002009	benzene	(total)			(As)	(Pb)	(Cr VI)	(CN)
1-1	2.0	20.5'	ND	ND	ND	ND	ND	ND	ND	ND	-	1.45		1.242	-
DP-7	discrete	22'	730**	1,100**	1,100*	< 0.15	< 0.098	1.3	17.8	< 0.26	ND	3.3	4.1	ND	ND
	1 m	24'	6.4**	7.4**	1.0 ^T	ND	ND	ND	ND	ND	1.24	-	-	1.340.11	÷.,
DP-(1,2,3,4)	composite	1'	21	ND	1.21	3	ir Fri	4		-	1	ND	1.9	ND	ND
	composite	4'	120 ^A	25 ⁴	-	1.1.9.1	LE REL	~	-	-		4.1	8.9	ND	ND
DP-(5,6,7,8)	composite	1'	180	< 3.0	1-2-3		-	-	· 	5 - S-4 - 1	1.00	ND	ND	ND	ND
	composite	4'	73^	20^	17901	3	i er i	-		-	1	3.7	7.0	ND	
Practica	Quantitation Lin	nit (PQL)	4.0	2.0	0.10		0.01		0.015	0.01	varies	1.7	1.0	0.1	75
SHA	nental Screening LLOW Soils (< 10 t idential / Convne	(1) ⁽¹⁾ :	100 / 500	100 / 110	100 / 500	0.044	2.9	33	2.3	0.023	varies	0.39 / 1.6	80 / 320	8	0.0036
DI	nental Screening EEP Soils (> 10 ft) idential / Comme	(1):	500 / 1,000	110	500 / 770	0.044	2.5	64	2.3	0.023	varies	0.397 2.0	80 / 320	21 / 110	0.0036
	and Ecological Ris alth Risk Assessm			-		0.33/1.4	1100 / 5,400	14	54.0	-	3	0.11 / 0.42	()	-	÷
Regional	USEPA Region 9 Screening Levels idential / Comme		-	-	-	1.2/ 5.1	490 / 4,700	5.8/25	65 / 280	4	varies	0.68 / 3.0	400 / 800	0.3 / 6.3	÷

Notes:

1 = Environmental Screening Levels (ESLs): from California Regional Water Quality Control Board - San Francisco Bay Region guidance document: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (interim Final, November 2007, Revised Dec. 2013). The ESLs are intended to provide guidance on whether or not remediation of detected contamination is warranted. The ESLs used for this table were obtained from Table A. Shallow Soils (<3m) & Table C. Deep Soil (>3m), Groundwater <u>IS</u> a current or potential Source of Drinking Water, the above referenced document.

Residential / Screening levels for Residential or Commercial land uses: screening limit concentraction are presented in BROWN for Residential land uses and in Green for Commercial/Industrial land uses. One number indicates the screening level is the same for both Residential and Commercial.

2 = Regional Screening Levels (RSLs): from the USEPA Region 9 RSL Tables (updated January 2015), and the User's Guide (November 2014). The RSLs are risk-based screening levels used for screening sites, calculating risk factors and potentially as cleanup goals once a site has been characterized.

BOLD BLUE FONT = Indicates soil sample concentration exceeds the most conservative of all the screening levels (ESLs).

bgs = below ground surface. ND = Not detected at or above the lab's practical quantitation limit.

* = Laboratory reports not typical gasoline pattern. TPH-Gasoline results includes significant contribution from heavy end hydrocarbons within the C5-C12 range quantified as Gasoline (possibly aged gasoline).

** = Laboratory reports not typical of Diesel and motor oil standard pattern (unknown discrete hydrocarbon peaks present).

T = Laboratory reports TPH value due to significant contribution from hydrocarbons heavier then requested fuel with the C5-C12 range quantified as Gasoline.

A = Laboratory reports not typical of Diesel and motor oil standard pattern (possibly fuel within the motor oil quantification range with discrete hydrocarbon peaks present).

Table 3: Grab Groundwater Analytical Results - June 29, 2010

Phase II Environmental Site Assessment

25 East Fifth Street, Watsonville, California

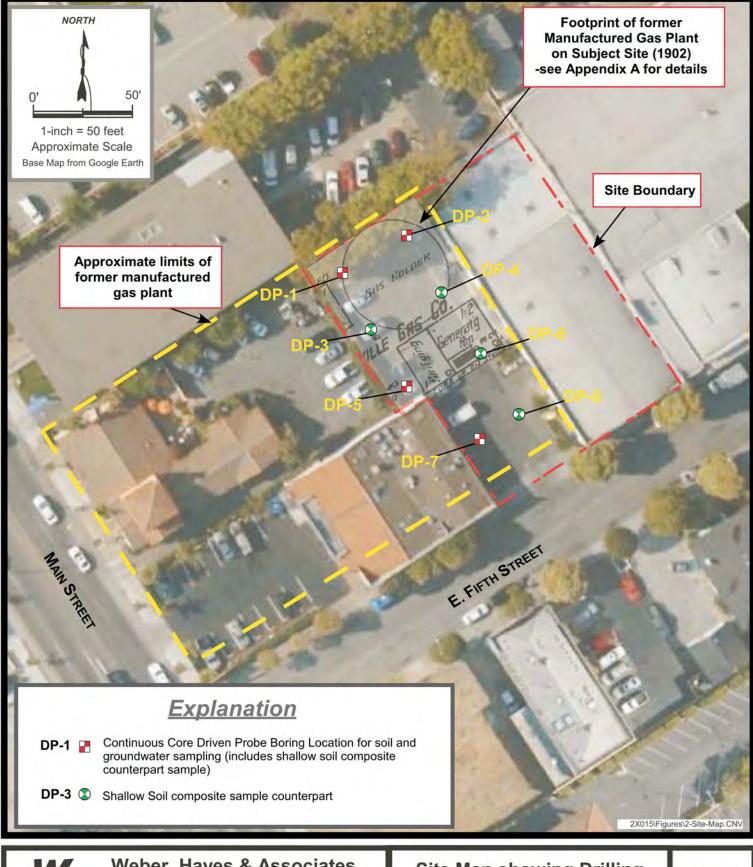
All groundwater sample results are in parts per billion (ug/L).

Grou	ndwater Sampling Inform	ation				L	aboratory An	alytical Results				
1.50	* -:	Touristic	Total I	Petroleum Hydro	carbons		Volatile Or	ganic Compour	nds (VOC's by	EPA 8260)		Polynuclear
Sample ID #	* First Encountered Groundwater	Temporary Screen Interval (feet, bgs)	Diesel	Motor Oil	Gasoline	Benzene	Toluene	Ethyl-	Xylene	MTBE	8010	Aromatic Hydrocarbon
	(feet, TOC)	(Jeet, bys)	(Micro-e	xtraction)	a de service	- shadke		benzene	(total)	antes .	Solvents	(PAHs)
DP-1	30'	25 - 30	ND	(a)	ND	ND	ND	ND	ND	ND	ND	ND
DP-2	28'	23 - 28	ND	(a)	ND	ND	ND	ND	ND	ND	ND	ND
DP-5	25.5'	20.5 - 25.5	ND	(a)	ND	ND	ND	ND	ND	ND	ND	ND
DP-7	24'	19 - 24	ND	(a)	150 [×]	ND	ND	ND	4.4	ND	ND	ND
Laborato	ry Practical Quantitation Limi	it (PQLs):	100	200	50		0,5		1.5	0.5	varies	4.2
Maxim	um Contaminant Levels (I	MCLs) (1)		-		1	150	300	1750	5		-
W	ater Quality Goals (WQG) Central Coast Region:	(2)	(as Tota	1,000 al Petroleum Hydro	ocarbons)	1	150	300	1,750	5	varies	Not Established

NOTES:

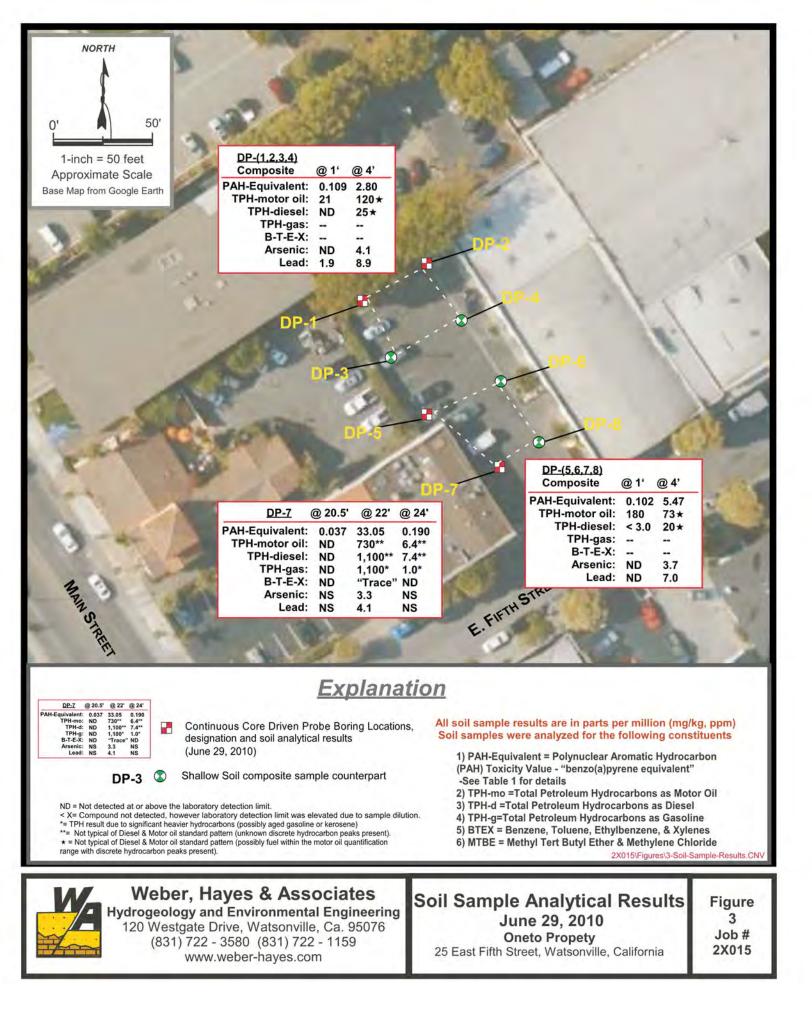
WQG = Water Quality Goals: Goals establised by the CRWQCB Central Coast Region based on Maximum Contaminant Limits (Department of Health Services) or taste & odor threshold limits. BOLD results indicate detected concentrations are above WQG's Threshold limits.

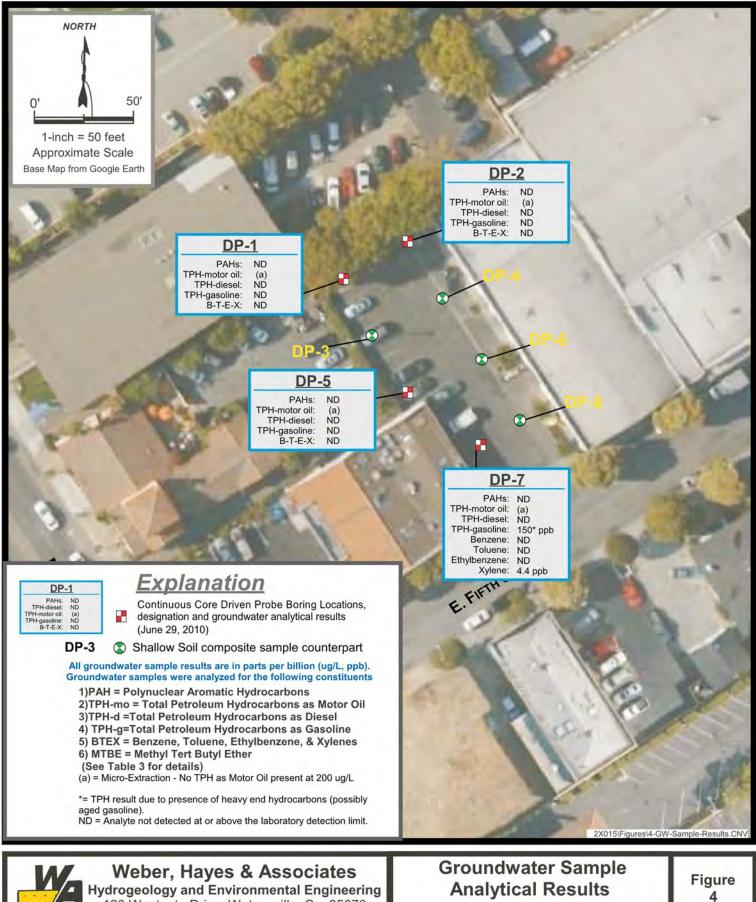
1 = Maximum Contaminant Levels (MCLs): These are the drinking water standards established in Title 22 of the California Code of Regulations.


2 = Central Coast Regional Water Quality Control Board Basin Plan - Water Quality Goals: These are the maximum groundwater concentration levels allowed by the CCRWQCB for a site to be considered a low risk to groundwater resources.

ND = Not detected at or above the lab's practical quantitation limit.

bgs = below ground surface


* = Depth to groundwater encountered during drilling.


- MTBE = Methyl-tert-Butyl-Ether
- X = Laboratory reports TPH value due to heavy end hydrocarbons with range of C5-C12 quantified as gasoline (possibly aged gasoline).
- (a) = Micro-Extraction -No TPH as Motor Oil pattern present at 200 ug/L.

Weber, Hayes & Associates Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 722 - 1159 www.weber-hayes.com

Site Map showing Drilling Locations Oneto Propety 25 East Fifth Street, Watsonville, California Figure 2 Job # 2X015

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 (831) 722 - 1159 www.weber-hayes.com Analytical Results June 29, 2010 Oneto Propety 25 East Fifth Street, Watsonville, California

Job #

2X015

Tables and Figures

Additional Site Assessment

Weber, Hayes and Associates, dated November 23, 2016 (includes updated Tables 4, 5 & 6 with follow-up Semi-Annual Grab Groundwater and Soil Vapor Sample Results)

Additional Site Assessment

25 East Fifth Street, Watsonville, CA

s	ample Information		1							Polycyc		Hydrocarbons (PA nod 8270C-SIM	Hs)						Benzo[a]py
ample ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	– Equivale
		0.5	1.96	4.7	19.5	6.87	53	7,47	7.21	56.7	48.2	19.4	26.5	22.2	6,47	22,1	2.86	6,28	28.628
B-1	5/3/2016	1.5	0.00152 J	0.00173 J	0.0133	0.0524	0.0587	0.00397 J	0.00688 J	0.0352	0.0747	0.0696	0.0536	0.0688	0.0247	0.0503	0.0126	0.038	0.101
		4	< 0.000674	< 0.000674	< 0.000674	0.00156 J	0.00155 J	< 0.000674	< 0.00225	0.00256 J	0.00191 J	0.00146 J	0.00157 J	0.00211 J	0.000698 j	0.00167 J	< 0.00674	0.00116 J	0.00
		0.5	< 0.000638	0.00165 J	0.00168 J	0.00278 J	0.00746 J	< 0.000638	< 0.00213	0.00246 J	0.00953	0.00568 /	0.00672	0.006 J	0.00199 J	0.00549 J	0.000967 1	0.0022 j	0.00
B-2	5/3/2016	1,5	< 0.000642	< 0.000642	0.00257 J	0.00701	0.0207	< 0.000642	0.00412 J	0.0126	0.0197	0.0135	0.0153	0.0175	0.00455 1	0.0156	0,00244 1	0.00591 J	0.02
		4	< 0.000687	< 0.000687	0.000733 J	< 0,000687	0.00206 J	< 0.000687	< 0.00229	0.00233 J	0.00225 J	0.000846 J	0.00136 J	0.000857 J	< 0.000687	0.000919 J	< 0.000687	< 0.000687	0.00
		0.5	< 0.00631	< 0.00631	< 0.00631	0.007581	0.0103 J	< 0.00631	< 0.0210	0.00897 1	0.0125 J	0.00856 J	0.00967 J	0.0107 J	< 0.00631	0.00787 J	< 0,00631	< 0.00631	0.01
		1.5	0.000810 J	0.00110 J	0.0112	0.00789	0.0367	0.00317 J	0.00727 J	0.0313	0.0426	0.0195	0.0253	0.0182	0.00536 1	0.0212	0.003 J	0.00641 J	0.02
		4	< 0.000678	< 0.000678	< 0.000678	< 0.000678	< 0.000678	< 0.000578	< 0.00226	< 0.000678	< 0.000678	< 0.00678	< 0.000678	< 0.000678	< 0.000678	< 0.000678	< 0.000678	< 0.000678	0.0
3-3	5/4/2016	10	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	0.00227 J	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	< 0.000679	0.0
		15	< 0.000687	< 0.000687	< 0.000687	0.000929 J	< 0.000687	< 0.000687	0.00758 J	0.000956 J	< 0.000687	0.000742 J	< 0.000687	0.00096 J	< 0.000687	< 0.000687	< 0.000687	0.000689 J	0.0
		20	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< 0.000685	0.00334 J	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< 0.000685	< .0.000685	0.0
	1000.000	0.5	< 0.000627	< 0.000627	< 0.000627	0.00107 J	0.00160 J	< 0.000627	0.003111	0.000664 J	0.00217 J	0.00141 J	0.00151 J	0.0016 J	< 0.000627	0.00104 J	< 0.000627	0.000771 J	0.00
B-4	5/3/2016	1.5	0.00110 J	0.00324 J	0.0467	0.0699	0.27	0.00477 J	0.0198 J	0.109	0.291	0.169	0.216	0.199	0.067	0.19	0.0323	0.0666	0.25
		4	< 0.000664	< 0,000664	< 0.000664	< 0,000664	< 0.000664	< 0.000664	0.00270 J	0.00259 J	0.000719 J	< 0.000664	< 0.000664	0.000763 J	< 0.000664	0.000673 J	< 0.000664	< 0,000664	0.00
Rep	ported Detection Limit (RDL) :	(0.006	0.006	0.006	0.006	0.006	0.006	0.02	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	+
Đ	Water Board wironmental Screening Levels ⁽²⁾ Rusidential / Commercial (Shallow Soils = < 9.8 ft)		16 16	13 13	2.8 3.8	2.5 2.5	60 60	e.s e.s	0.033 0.033	n a	85 85	0.016 0.29	0.16 2.9	0.16 2.9	3.6 2.6	3.8 3.8	0.016 0.29	D.16 2.3	o ata a
Đ	Water Board wironmental Screening Levels ⁽¹⁾ Rendeminal / Commercial (Deep Soils > 9.8 ft)		16 16	13 13	2.8 Z.R	25 25	60 60	8.9 8.9	0.033 0.033	u u	85 BS	0.016 0.29	0.16 2.9	0.16 2.9	1.6 2.6	25 38	0.026 (0.29)	0.16 2.9	0.016/
Re	USEPA Region 9 glonal Screening Levels (RSLs) ⁽²⁾ Residential / Commercial		3,600 45,000	-	18,000 230,000		2,400 30,000	2.400 30,000	86 17	-	1,800 23,000	0.016 0.29	0.15 2.5	0,16 2.6	1.6 29	£5 290	0.016 0.29	0.16 2.3	0.016 /

Additional Site Assessment

25 East Fifth Street, Watsonville, CA

s	ample Information									Polycyc		Hydrocarbons (PAH od 8270C-SIM	ls)						Benzo[a]py
ample ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	Equivale
		0.5	< 0.000632	< 0.000632	0.00360 J	0.00862	0.0194	0.00128 J	0.00356 J	0.0109	0.0257	0,0115	0.0104	0.0112	0.00475 J	0.00969	0.00189 J	0.00615 J	0.017
		1.5	0.000894 J	0.000661 J	0.0211	0.058	0.127	0.00309 J	0.0100 J	0.0397	0.129	0.126	0.128	0.152	0.0419	0.11	0.0257	0.0546	0.190
B-5	5/3/2016	4	0.000727 J	< 0,000680	0.000868 J	0.00147 J	0.00152 J	< 0.000680	0.00340 J	0.00545 J	0.00169 J	0.00132 J	0.00138 J	0.00218 J	0.000793 J	0.00181 J	< 0.00068	0.00119 J	0.002
0-3	5/5/2016	10	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	0.00336 J	0.00143 J	< 0.000661	< 0.000561	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	0.001
		15	< 0.000693	< 0.000693	< 0.000693	< 0,000593	< 0.000693	< 0.000693	0.00297 J	0.000768 J	0.000981 J	< 0.000693	< 0.000693	< 0.000693	< 0.000693	< 0.000693	< 0.000693	< 0.000693	0.00
		20	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	0.00532 J, B	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	< 0.000749	0.00
		0.5	< 0.000669	0.00102 J	0.0113	0.0274 J3	0.0566 13 , 15	0.00227 J	0.0105 J, B	0.0196 J3, J5	0.0660 J3, J5	0.0471 J3, J5	0.0466 13, 15	0.047 J3, J5	0.0184	0.0478 J3	0.00961 J3	0.0185 J3	0.07
B-6	5/3/2016	1.5	0.00143 J	0.00214 J	0.0191	0.0422	0.113	0.00523 J	0.0175 J, B	0.0346	0.15	0.124	0.129	0.13	0.0494	0.109	0.0177	0.0426	0.17
		4	< 0.000684	< 0.000684	< 0.000684	< 0.000684	< 0.000684	< 0.000684	0.00439 J, B	0.000703 J	< 0,000684	< 0.000684	< 0.000684	< 0.000684	< 0.000684	< 0.000684	< 0.000684	< 0.000684	0.00
		0.5	< 0.000618	< 0.000618	< 0.000618	0.001361	< 0.000618	< 0.000618	0.0118 J, B	< 0.000618	0.000945 J	0.000794 J	< 0.000618	0.00118 J	< 0.000618	0.000652 J	0.000683 J	< 0.000618	0.00
1-7	5/3/2016	1.5	0.188 J	0.431	3.46	4.49	17.8	1	1.17 J, B	7.77	21.9	11.8	(3.7	u	4.53	11.4	1,52	4.11	16.7
		4	< 0.000655	< 0.000655	< 0.000655	< 0,000655	0.00121 J	< 0.000655	< 0.00218	0.000923 J	0.00187 J	< 0.000655	0.00112 J	0.00189 J	< 0.000655	0.00287 j	< 0.000655	< 0,000655	0.00
		0.5	< 0.000617	< 0.000617	< 0.000617	< 0.000617	< 0.000617	< 0.000617	0.00242 J, B	< 0.000617	< 0.000617	< 0.000617	0.000657 1	< 0.000617	< 0.000617	< 0.000617	< 0.000617	< 0.000617	0.00
		1,5	0.0705 J	0.0842 J	1.56	1.2	6.83	0.32	0.123 J, 8	2.67	7.53	3.69	5.2	3.58	1.47	4.22	0.436	1.06	5.25
		4	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.00233	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	0.00
	-	10	< 0.000633	< 0.000633	0.00162 J	< 0.000633	0.00350 J	< 0.000633	0.00267 J, B	0.00332 J	0.00454 J	0.00143 J	0.00196 J	0.00151 J	0.000711 J	0.00123 J	< 0.000633	< 0.000633	0.00
B-8	5/3/2016	15	0.273	0.0922	0.441	0.036	0.459	0.199	0.0115 J, B	1.01	0.508	0.138	0.22	0.127	0.0459	0.163	0.0146	0.0355	0.19
		17	8.42	6.14	21	1.74	27.4	26.5	138	45,4	27	7.44	12.7	6.54	3.04	8.91	0.736	1.69	10.6
		20	0.0221	0.0452	0.0876	0.000754 J	0.0487	0.0881	0,156	0.14	0.0542	0.00709	0.0177	0.00547 J	0.00357 J	0.00753	< 0.000684	0.000941 J	0.01
		23	0.0384	0.0366	0.00631 J	< 0.000736	0.00102 J	0.00797	0.0184 J, B	0.027	< 0.000736	< 0.000736	< 0.000736	< 0.000736	< 0.000736	< 0.000736	< 0.000736	< 0.000736	0.00
Re	orted Detection Limit (RDL) :		0,006	0.006	0.006	0.006	0.006	0.006	0.02	0.006	0.006	0.006	0,006	0.006	0.006	0.006	0.006	0.005	1
i	Water Board wironmental Screening Levels ^(II) Residential / Commercial (Shallow Soils = < 9.8 ft)		16 16	13 13	2.8 2,8	10 10	60 60	8.9 8.9	0.033 0.033	n u	85 85.	.0.016 0.29	0.16 2.5	0,16 2.8	2.6. 2.6	3.5 3.8	0.016 0.29	0.16	0,016 /
i	Water Board ivironmental Screening Levels ¹¹¹ Residential / Commercial (Deep Soils > 9.8 ft)		10 16	13 13	2.6 2.8	2.5 2.5	60 60	6.9 8.9	0.633 0.033	n n	25 85	0.016 0.29	0.0- 2.9	0.16 2.3	1.0 2.0	X81 38	0.016 0.29	0.36 2.9	0.036/
Ri	USEPA Region 9 gional Screening Levels (RSLs) ⁽²⁾ Residential / Commercial		3,600 45,000	-	Tā,000 230,000		2,400 30,000	2,400 30,000	38 17	()(4)	1,800 23,000	0.015 0.29	0.06 2.9	0.16 2.9	0.6 29	15 290	6.016 (8.29)	0.16 2.8	0.0367

Additional Site Assessment

25 East Fifth Street, Watsonville, CA

s	ample Information									Polycyc		Hydrocarbons (PAF od 8270C-SIM	Hs)						Benzo[a]py
ample ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	Equivale
		0.5	< 0.000619	< 0.000619	0.00209 J	0.0188	0.0258	< 0.000619	0.00389 J, B	0.00297 J	0.035	0.0284	0.0207	0.0243	0.0111	0.0195	0.0038 J	0.0141	0.039
	5/3/2016	1.5	0.843 J	1.25 J	22.8	15.1	128	2.81	3.12 J, B	19.3	145	61	106	55.2	26,6	74.4	7.83	15.4	89.8
B-9		4	0.783	0.464 J	7.73	7,51	69	1.23	0.440 J, B	1.95	76.6	25,3	43.8	26.9	#	31.5	3.45	7,48	37.9
	8/18/2016	6	0.0764	1.10	0.877	1.00	5.38	0.231	< 0.0226	1.15	7.66	2,81	4.2	2.8	1.19	2.99	0.442	0.989	4.2
	6/16/2016	8	0.0498 J	0.0784	0.545	0.341	2.06	0.35	0.115 J	0.895	2.66	1.15	1.57	1.16	0.48	1.19	0.189	0.308	1.7
		0.5	0.00409 J	0.0132 J	0.083	0.21	0.657	0.0162 J	0.0277 J, B	0.34	0.881	0.352	0.34	0.318	0.103	0.315	0.0452	0.167	0.4
B-10	5/3/2015	1.5	0.0471 J	0.0987 J	1.24	3.03	9.82	0.226 J	0.364 J, B	0.97	11.5	9.4	13.5	ina-	3.97	10.8	1.34	3.08	14.0
		4	< 0.000662	< 0.000662	0.000837 J	0.00154 J	0.00195 J	< 0.000662	< 0.00221	0.00103 J	0.00256 J	0.00133 J	0.00158 1	0.00268 J	0.000946 1	0.00201 J	< 0.000662	0.00132 J	0.0
		0.5	< 0,000629	< 0.000629	0.000952 J	0.00136 J	0.00320 J	< 0.000629	< 0.00210	0.00217 J	0.00392 J	0.00203 J	0.00246 J	0.00227 J	0.000721 J	0.00227 J	< 0.000629	0.000803 J	0.0
		1.5	0.157	0.145	1.69	1.11	5.7	0.567	0.5	4.04	6.69	3.22	4.27	3.63	0.986	3.54	0,535	1.03	4.7
		4	< 0,000683	< 0,000683	< 0.000683	0.00108 J	0.00124 J	< 0.000683	< 0,00228	0.000703 J	0.00155 J	0.00139 J	0.00148 J	0.00175 J	< 0.000683	0.00108 J	< 0.000683	0.000865 J	0.0
B-11	5/4/2016	10	< 0.000653	< 0.000653	< 0.000653	< 0.000653	0.000891 J	0.00214 J	< 0.00218	0.00175 J	0.00117 J	< 0.000653	0.000973 J	< 0.000653	< 0.000653	0.000734 J	< 0.000653	< 0,000653	0.0
D-11	5/4/2010	15	0.0137	0.0269	0.0199	< 0.000699	0.00682 J	0.0364	0.00879 J	0.053	0.00564 J	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	< 0.000699	0.0
		20	0.00650 J	0.0176	0.00173 J	< 0.000734	< 0.000734	0.0124	0.0602	0.00363 J	< 0.000734	< 0.000734	< 0.000734	< 0.000734	< 0.000734	< 0.000734	< 0.000734	< 0.000734	0.0
		24	0.0111	0.013	0.00708 J	< 0.000719	0.00571 J	0.0379	0.0116 J	0.0117	0.00654 J	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	0.0
		28	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.00231	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	< 0.000694	0.0
Re	ported Detection Limit (RDL)		0.006	0.006	0.006	0.006	0,006	0.006	0.02	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	-
E	Water Board wironmental Screening Levels ^(I) Residential / Commercial (Shallow Soils = < 9.8 /t)		16 16	13 13	2.5 2.8	2.5 2.5	50. 60	8.9 8.9	0.033 0.033	u u	85 85	0.010 0,29	0.15. 2.5	0.16 2.9	1,6 2,6	3.8 3.8	0.016 0,29	0.16 2.9	0.016
4	Water Board avironmental Screening Levels ⁽¹⁾ Residential / Commercial { Deep Soils > 9.8 ft }		16 16	13 .13	2.8 2,8	25 25	60 60	8.9 8.9	0,033 . 0.033	n n	85 85	0.016 0.29	0.16. 2.5	0.36 2.9	3.6 2.6	8,8 à.8	0.016 0.29	0.16 . 2,9	0,016
R	USEPA Region 9 gional Screening Levels (RSLs) ⁽²⁾ Residential / Commercia)	C	3,600 45,000	-	18,000 230,000	8	2,400 30,000	2,400 30,000	3.8 17	-	1,800 -23,000	0.010 0.29	0,10 2.9	0,10 2,9	8.6 29	16 290	0,016 0.29	0.16 2.9	0,011

Table 1: Soil - PAH Analytical Results Additional Site Assessment

Additional Site Assessment

25 East Fifth Street, Watsonville, CA All soil results are in milligrams per Kilogram (mg/Kg)

s	ample Information									Polycyc		Hydrocarbons (PAF and 8270C-SIM	Hs)						Benzo[a]py
ample ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthrocene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	Equivale
-		0.5	< 0.00670	< 0.00670	< 0,00670	0.0170 J	0.0102 J	< 0.00670	< 0.0223	0.00830 J	0,0150 J	0.0124 J	0.011 J	0.0166 J	< 0.00067	0.00914 J	< 0.00067	0.00739 J	0.016
B-12	5/3/2016	1.5	< 0.000708	< 0.000708	0.00140 J	0.00435 J	0.007 J	< 0.000708	0.00302 J	0.00510 J	0.00832	0.00765 J	0.00687 J	0.00871	0.00293 j	0.00735	0.00135 J	0.00352 J	0.01
		4	< 0,000670	< 0.000670	< 0.000670	< 0,000670	< 0.000670	< 0.000670	< 0.00223	< 0.000670	< 0.000670	< 0,00067	< 0.00067	< 0.00067	< 0.00067	< 0.00067	< 0.00067	< 0.00067	0.00
		0.5	< 0.000620	< 0.000620	0.00116 /	0.00994	0.0106	< 0.000620	< 0,00207	0.00166 J	0.0166	0.0109	0.0076	0.0113	D.00403 J	0.00781 J	0.00153 J	0.00699	0.01
B-13	5/3/2016	1.5	< 0.000784	< 0.000784	< 0.000784	< 0,000784	0.00154 J	0.00154 J	< 0.00261	0.00574 J	0.00156 J	< 0.000784	0.00124 J	0.000972 J	< 0.000784	0.00132 J	< 0.000784	< 0.000784	0.00
		4	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.00225	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	< 0.000675	0.00
		0.5	< 0.0313	< 0.0313	0.0543 J	0.0665 J	0.179 J	< 0.0313	< 0.104	0.136 J	0.215 J	0.11 J	0.144 J	0.115 J.	0.0362 J	0.138 J	< 0.0313	0.0362 J	0.16
		1.5	< 0.000731	< 0.000731	< 0.000731	0.00487 J	0.00244 J	< 0.000731	0.00375 J	0.00634 J	0.00321 J	0.00206 J	0.00181 J	0.00313 J	0.000816 1	0.00355 J	< 0.000731	0.00164 J	0.0
		4	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.00220	< 0,000661	< 0.000661	< 0.000661	< 0,000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	< 0.000661	0.0
3-14	5/3/2016	10	< 0.000680	< 0.000680	< 0.000680	< 0,000680	< 0.000680	< 0.000680	< 0.00227	< 0.000680	< 0.000680	< 0,00068	< 0.00068	< 0.00068	< 0.00068	< 0.00068	< 0.00068	< 0.00068	0.0
		15	< 0,000705	< 0.000705	< 0.000705	< 0,000705	< 0.000705	< 0.000705	< 0.00235	< 0,000705	< 0.000705	< 0.000705	< 0.000705	< 0.000705	< 0.000705	< 0.000705	< 0.000705	< 0.000705	0.00
		20	< 0.000653	< 0,000653	< 0.000653	< 0,000653	< 0.000653	0.000902 J	0.00518 J	0.00122 J	< 0.000653	< 0.000653	< 0.000653	< 0,000653	< 0.000653	< 0.000653	< 0.000653	< 0.000653	0.0
		0.5	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	0.00356 J	0.00207 1	0.0007961	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	< 0.000719	0.0
B-15	5/3/2016	1,5	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.00242	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	< 0.000727	0.00
		A	< 0.000691	< 0.000691	< 0.000691	< 0.000691	< 0.000691	< 0.000691	0.00470 J	0.00102 J	< 0.000691	< 0.000691	< 0.000691	< 0.000691	< 0.000691	< 0.000691	< 0.000691	< 0.000691	0.00
Rep	ported Detection Limit (RDL) :		0.006	0.006	0.006	0.006	0.006	0.006	0.02	0.006	0.006	0.006	0.006	0.006	0,006	0.006	0.006	0.006	9
E	Water Board nvironmental Screening Levels ⁽¹⁾ Residential / Commercial (Shallow Soils < < 9.8 ft)		10 36	13 13	2.8 2.8	2.5 2.5	60 60	8.9 8.9	0.023 0.033	ii ii	25 R5	0.016 0.29	0.65. 2.9	0.16 2.5	2.6		0.030 0.29	0.16 2.9	0.015/
E	Water Board avironmental Screening Levels ⁽¹⁾ Residential / Commercial (Deep Soils > 9.8 ft)		16 16	13 13	2.6 2.8	2.5 2.5	50 50	ē.6 6.5	0.033 0.033	u u	85 85	n.dia 0,29	0.26 2.5	0.16 2.9	26 26	1.K · 3.8	0.016 (0.29)	D.36 2.8	
Re	USEPA Region 9 rgional Screening Levels (RSLs) ⁽²⁾ Roudential / Commitcial		3,600: 45,000	-	19,000 230,000	*	3,400 30,000	2,400 30,000	3.8 37	÷	1.800 23,000	0.016 0.29	0,16 2,9	0.16 2.9	2.6 29	16 290	0.026 0.29	D.26 2.9	0.016 /

Additional Site Assessment

25 East Fifth Street, Watsonville, CA

s	ample Information		1							Polycyc		Hydrocarbons (PA nod 8270C-SIM	Hs)						Benzo[a]py
ample ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	– Equivale.
	c la fana c	0.5	< 0.000620	< 0.000620	< 0.000620	< 0,000620	< 0.000620	< 0.000620	< 0.00207	< 0.000620	< 0,000620	< 0.00062	< 0.00062	< 0.00062	< 0.00062	< 0,00062	< 0.00062	< 0.00062	0.001
P-1	5/5/2016	1.5	< 0.000721	< 0.000721	0.00125 J	0.00198 J	0.00578 J	< 0.000721	0.00274 J	0.00160 J	0.00848	0.00464 J	0.00488 1	0.00529 J	0.00167 j	0.00427 J	< 0.000721	0.00149 J	0.006
	- In Jacob	0.5	< 0.000631	< 0,000631	< 0.000631	< 0,000631	0.00102 J	< 0.000631	0.00215 J	0.000732 J	0.00150 J	0.000872 J	0.00108 J	0.001 J	< 0.000631	0.000784 J	< 0.000631	< 0,000631	0.001
	5/5/2016	1.5	0.119 J	0.674	2.52	6,32	13.9	0.705	2.61	3.62	18.9	12.8	12.2	13.2	4.53	10.6	1.73	5.27	18.15
		4	0.259	9.1	6.17	7.27	32.7	1.47	10	5.23	47.4	20.3	27.8	19.9	5,43	20.7	3.74	7.14	30,27
	-	6	0.134	2.39	2.69	1.07	8.34	0.693	0.683	4.19	7.54	3.3	5,25	3.43	1.04	4.24	0.439	1.03	4,85
P-2	-	8	4.68	7.58	14.4	0.988	13.4	16	55.9	26.1	13.5	3.84	6.72	3.33	0.925	4.85	0.409	0.932	5.48
	8/18/2016	12	2.32	2.51	6.46	0.385	5.88	8.12	34.6	11.9	5.14	1.58	2.63	1.31	0.467	1.88	0.152	0.346	2,22
		15.5	0.262	0.676	0.853	0.0801	0.684	1.01	3.59	1.52	0.778	0.235	0.399	0.221	0.0612	0.297	0.0318	0.071	0.34
		18	2.26	3,92	6.9	0.694	6.48	8.56	40.8	11.9	6.58	2.09	3.81	1.82	0.723	2.62	0.284	0.628	3.09
P-3	5/5/2016	0.5	< 0,000629	< 0.000629	< 0.000629	< 0,000629	0.00139 J	< 0.000629	< 0,00210	< 0.000629	0.00216 J	0.0013 J	0.00136 J	0.00154 J	< 0.000629	0.00097 J	< 0.000629	< 0.000629	0.00
r-3	5/5/2016	1.5	< 0.000772	< 0.000772	< 0.000772	< 0,000772	0.00147 J	< 0.000772	0.00388 J	0.00198 J	0.00218 J	0.000937 J	0.00129)	0.00126 J	< 0.000772	0.00103 J	< 0.000772	< 0.000772	0.00
	e le thouse	0.5	< 0.000711	0.00123 J	0.00696 J	0.0223	0.0822	0.00172 J	0.00857 J	0.0296	0.0943	0.0494	0.0478	0.0583	0.0217	0.053	0.00645 J	0.0189	0.07
P-4	5/5/2016	1.5	< 0.000678	< 0.000678	< 0.000678	0.00209 J	0.00479 J	< 0.000678	0.00355 J	0.00432 J	0.00595 J	0.00329 J	0.00324 J	0.00434 J	0.00146 j	0.00406 J	< 0.000678	0.0015 J	0.00
P-7	5/5/2016	0.5	< 0.000733	< 0.000733	0.000804 J	0.00303 J	0.00452 J	< 0.000733	0.00446 J	0.00797	0.00607 J	0.0045 J	0.00374 1	0.00609 J	0.00138 J	0.00536 J	0.000834 J	0.00214 J	0.00
-1	5/3/2010	1.5	< 0,000683	< 0.000683	< 0.000683	< 0,000683	0.000687 J	< 0.000683	0.00309 J	0.000713 J	0.000802 J	< 0.000683	< 0.000583	< 0.000683	< 0.000683	< 0.000683	< 0.000683	< 0.000683	0.00
Rej	ported Detection Limit (RDL) :		0.006	0.006	0.006	0.006	0.006	0.006	0.02	0.006	0.006	0.006	0.005	0.006	0.006	0.006	0.006	0.005	
ţ	Water Board nvironmental Screening Levels ⁽¹⁾ Residential / Commercial (Shallow Spils = < 9.8 ft)		16 16	13 13	2.8 2.8	2.5 2.5	60 50	8.9 8.9	0.033 0.033	11 II	85 R 5	0.016 0.29	0.16- 2.9	0.16 2.9	3.6 2.6	3.8	0.026 0.29	0.16 2.9	0.016/0
E	Water Board nvironmental Screening Levels ⁽¹⁾ Residential / Commercial (Deep Solls > 9.8 ft.)		10 16	13 13	2.8 Z.8	25 25	60 60	8.9 8.9	0.021 0.033	u u	25 N 5	0.016 0.29	016 2.9	0.16 2.9	ā.6 2.6	38 3 8	0.016 0.29	0.16 2.9	D.016/0
R	USEPA Region 9 egional Screening Levels (RSLs) ⁽²⁾ Residential / Commercial		3,600: 45,000	-	18,000 230,080	-	2,400 30,000	2,400 30,000	3.8 17	-	1,800 23,000	0,016 0,29	0.1E 2.9	0.16 2.9	3.6 29	16 290	0.016 0.29	0.16 2.9	-D,016 /

Additional Site Assessment

25 East Fifth Street, Watsonville, CA

s	ample Information									Polycyd		Hydrocarbons (PA od 8270C-SIM	Hs)						Benzo[a]pyren
imple ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	– Equivalent
		0.5	0.0395	0.0921	0.194	0.96	1.01	0.0429	0.282	0.423	1,18	1.56	1.16	1.3	0.532	1.02	0,302	0.818	2.253
		1.5	0.0411 J	0.066	0.61	1.42	2.43	0.181	0.113	1.14	2.26	1.72	1.34	1.6	0.568	1.29	0.312	1,04	2.500
G-1	8/18/2016	4	0.0308 J	0.673	0,621	1.51	2,91	0.122	0.14	0.547	3.28	2.54	2.72	2.42	0.973	2.11	0.43	1,22	3,724
		6	< 0.000682	< 0.000682	< 0.000682	< 0,000682	< 0.000682	< 0.000682	0.00288 J	0.000714 J	< 0.000682	< 0.000682	< 0.000682	< 0.000682	< 0.000682	< 0.000682	< 0.000682	< 0.000682	0.001
		8	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.00226	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	< 0.000677	0.001
		0.5	0.0174 J	0.0801	0.152	0.172	0.498	0.0549	0.03661	0.334	0.568	0.286	0.325	0.295	0.0899	0.261	0.0482	0.141	0.422
		1.5	0.00181 J	0.00328 J	0.0104	0.00449 J	0.0242	0.00711 J	0.00927 J	0.0311	0.0203	0.00855	0.0114	0.00974	0.00265 J	0.0112	0.00153 J	0.00342 J	0.013
G-Z	8/18/2016	4	< 0.000686	< 0.000686	< 0.000686	< 0.000686	0.00108 J	< 0.000686	0.00347 J	0.00169 J	0.00109 J	< 0.000696	0.000932 J	0.000753 J	< 0,000686	< 0.000686	< 0.000686	< 0.000686	0.001
		6	< 0,000665	< 0.000665	0.00229 J	0.00226 J	0.00763	< 0.000665	0.00306 J	0.00524 J	0.0071	0.00381 J	0.00424 J	0.00395 J	0.00171 J	0.00467 J	0.000667 J	0.00166 J	0.006
		8	< 0.000659	< 0.000659	0.00209 J	0.00218 J	0.00854	0.00125 J	< 0.00220	0.00458 J	0.00650 J	0.0033 J	0.00368 J	0.00367 J	0.00149 J	0.00261 J	0.000678 J	0.00152 J	0.005
Rep	oorted Detection Limit (RDL) :		0.006	0,006	0.006	0.006	0,006	0,006	0.02	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	
Ē	Water Board wironmental Screening Levels ⁽ⁱ⁾ Residential / Commercial (Shallow Soils = < 9.8 ft)		10 15	13 13	2.6 2.8	2.5 2.5	60 60	a.9 8.9	0.033 0.033	n n	85 85	0.016 0.29	0.0 2.5	0.16 2.5	9.6 2,6	3.8 3.8	6 011 0.29	0.36 2.8	0.016 / 0,29*
E	Water Board hvironmental Screening Levels ^(II) Residential / Commercial (Deep Solls > 9.8 ft)		16 16	13 13	2.8 2.8	2.5 2.5	60 60	8.9 8.9	0.033 0.033	п п	85 85	0.015 0,29	0.16 2.9	0.16 2.9	4.6 2.6	38 3.8	0.026 0.29	0.26 2.9	D.DIE / 0.29*
Re	USEPA Region 9 gional Screening Levels (RSLs) ⁽²⁾ Residential / Commercial		3,600 45,000		18,000 230,00		2,400 30,000	2,400 30,000	71 50		1,000 23,000	0.016 0.29	1) Lá 2.9	016 2.9	1,6 25	16 290	0.016 0.29	0.16 2,9	0.016 / 0.29*

Additional Site Assessment

25 East Fifth Street, Watsonville, CA

All soil results are in milligrams per Kilogram (mg/Kg)

Sa	mple Information		-							Polycyc		Hydrocarbons (PA od 8270C-SIM	Hs)						Benzo[a]py
imple ID	Sample Date	Depth (ft)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd] pyrene	Equivale
		0.5	0.00127 J	0.00249 J	0.0119	0.0325	0.083	0.00514 J	0.00756 J	0.036	0.0663	0.0471	0.0381	0.0553	0.0164	0.0444	0.00869	0.0266	0.070
N 9 1		1.5	0.00121 J	0.00299 J	0.00648 J	0.00406 J	0.0184	0.00428 J	0.00487 J	0.0235	0.016	0.00713 J	0.00905	0.00847	0.00232 j	0.0108	0.00134 J	0.00319 J	0.011
DG-3	8/18/2016	4	< 0,000667	< 0,000667	< 0.000667	0.000845 J	0.00340 J	< 0.000667	0.00273 j	0.00132 J	0.00297 J	0.00176 J	0.00234 J	0.00201 J	< 0.000667	0.00196 J	< 0.00667	0.000732 J	0.006
		6	< 0.000664	< 0.000664	< 0.000664	0.000665 J	< 0.000664	< 0.000664	< 0.00221	0.000792 J	0.000954 J	< 0.000664	0.000673 J	< 0.000664	< 0.000664	< 0.000664	< 0.000664	< 0.000664	0.00
		8	< 0.000675	< 0.000675	< 0.000675	0.00123 J	0.00184 J	< 0.000675	< 0.00225	0.00151 J	0.00231 J	0.00104 1	0.00137 J	0.00117 J	< 0.000675	0.00127 J	< 0.000675	0.000751 J	0.00
		0.5	< 0.00125	< 0.00125	0.00181 J	0.00250 J	0.00221 J	0.00187 J	< 0.00416	0.00325 J	0.00286 J	0.00194 J	0.00211 J	0.00232 J	< 0.00125	0.00181 J	0.00182 j	0.00146 J	0.00
		1,5	< 0.000626	< 0.000626	0.00161 J	0.00276 J	0.00722	0.000842 J	0.00344 J	0.00217	0.00766	0.00576 J	0.00575 J	0.00588 J	0.00189 J	0.00464 J	0.000992 J	0.00229 J	0.00
DG-4	8/18/2016	.4	< 0.000688	< 0.000688	0.00138 J	< 0.000688	0.00200 J	0.00187 J	0.00751 J	0.00355 J	0.00179 J	0.000804 J	0.00142 J	< 0.000688	< 0,000688	0.000967 J	< 0.000688	< 0.000688	0.00
		6	< 0.000683	< 0.000683	< 0.000683	< 0.000683	< 0.000683	< 0.000683	< 0.00228	0.000866 J	< 0.000683	< 0.000683	< 0,000683	< 0.000683	< 0.000683	< 0.000683	< 0.000683	< 0.000683	0.00
		8	< 0.000678	< 0.000678	< 0.000678	0.00156 J	< 0.000678	< 0.000678	0.00246 J	0.00137 J	0.000970 J	0.000722 J	< 0.000678	0.00131 J	< 0.000678	< 0.000678	0.000797 J	< 0.000678	0.00
Repo	rted Detection Limit (RDL) :		0.006	0,006	0.006	0.006	0,006	0,006	0.02	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0,005	
Env	Water Board ironmental Screening Levels ⁽²⁾ Residential / Commercial (Shallow Soils = < 9,8 ft)		10 15	13 13	2.6 2.0	2.5 2.5	60 D0	8.2 8.9	0.023 0.033	n n	85 85.	0.034 0.29	0.0 2.5	0.16 2.5	9.6 2.B	3.8 3.8	0.01n 0.29	n.36 2.8	0.016/0
Env	Water Board ironmental Screening Levels ^(I) Residential / Commercial (Deep Sails > 9.8 ft)		16 16	13 13	2.8 2.8	2.5 2.5	6α 60	8.9 8.9	0.033 0:033	11 II	85 85	0.016 0.29	01ê 2.9	0.16 2.9	1.6 Z.6	38 3.8	0 036 0,29	0.26 2.9	D.036 /
Reg	USEPA Region 9 onal Screening Levels (RSLs) ⁽²⁾ Residentia) / Commercial		1,600 45,000	æ	18,000 230,000	-	2,400 30,000	2,400 30,000	71 89	æ	1.000 23.000	0.016 D.29	9.16 2.9	a 16 2.9	16 29	16 290	0.016 0.29	016 2.3	0.D15 /

1 = Environmental Screening Levels (ESLs): from User's Guide: Screening for Environmental Concerns ot Sites With Contaminated to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted. The ESLs used in this table were obtained from the above referenced document, Table A. Shallow Soils (<3m).

2 = Regional Screening Levels (RSLs): from the USEPA Region 9 RSL Tables (updated November 2015) https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2015, revised Nov 2015>. The RSLs are risk-based screening levels used for screening levels used for screening sites, calculating risk factors and potentially as cleanup goals once a site has been characterized.

3 = DTSC Advisory - Use of the Northern and Southern California Polynuclear Aromatic Hydrocarbon (PAH) Studies in the Manufactured Gas Plant Site Cleanup Process (July 1, 2009): Page 8, Establishing a Practical Target to Guide Soil Excavation/remediation. This value corresponds to upper bounds of the ambient data sets. Experience at various MGP site has shown that removal/remediation of soil areas and hotspots exceeding 0.9 mg/Kg BaP equivalents is a reasonably conservative guide for the main phase of excavation/remediation activities.

Benzo(a)pyrene

Equivalent = Sum of detection values for; Benzo(a)pyrene, Benzo(a)anthracene x 0.1, Benzo(b)fluoranthene x 0.1, Benzo[k]fluoranthene x 0.1, Chrysene x 0.01, Dibenzo[a,h]anthracene , and Indeno[1,2,3-cd]pyrene x 0.1

* = There is no ESL value for B(a)P equivelent. Results compared against screening values for Benzo(a)pyrene for reference only.

< X = Constituent not detected above the laboratory's Method Detection Limit (MDL), X.

J = Laboratory reports that the detection value is between MDL and PQL, and should be considered to be an estimate.

J3 = Laboratory reports that the associated batch QC was outside the established quality control range for precision.

J5 = Laboratory reports that the sample matrix interfered with the ability to make any accurate determination; spike value is high.

B = Laboratory reports that the analyte is found in the associated blank.

A = Method Detection Limit and Practical Quantitation Limit raised after sample was diluted. Dilutions were necessary due to elevated analyte concentrations or matrix interferences.

BOLD = Analytical result for BaP Equivalent exceeds the CA DTSC PAH 2009 Study Limit. Refer to note 3 above.

BOLD = Analytical result above Commercial ESL.

All soll results are in milligrams per Kilogram (mg/Kg)

Sampl	e Information											-17 Metals										Cyani by EPA M
Sample ID	Sample Date	Depth (ft)	Antimony	Arsenic	Barlum	Beryllium	Codmium	Chromium	Cobalt	Copper	Lead	Lead STLC-soluble (mg/L)	Lead TCLP-soluble (mg/L]	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	901
8-1	5/3/2016	0.5		~		-	-			-	16.1	-		~	-	~	-	~	-	-		
	3/3/2020	1.5		-		- e	- · · · ·		- ж		15.1			-	÷		1.5	1.00				-
B-2	5/3/2016	0.5	Ξ.	8	X		-	*	н.	94	< 0.202	X	X	×	8	1.19				1040	<u> </u>	
	5/3/2020	1.5	-	-		-			- 4 -	4	5.22		(+)		1 14	11.14	1.000	1.1.2		1.00	-	-
		0.5	< 0.789	< 0.684	26.3	< 0.0736	≪ 0.0736	1.4	2.63	38.7	1.26	÷		0.0658	< 0.168	0.765	< 0.778	< 0.295	< 0.684	11.9	9.75 B	
B-3	5/4/2016	1.5	1.01 J	4.71	247	0.398	0.206 J	15.7	4.68	7.08	11.4	1++1	+	0.0238	0.87	17.4	< 0.525	< 0.300	< 0,696	22	22.2	<
-	-	4	< 0.848	1.39 J	121	0.321	0.215 J	18.4	6.75	12.2	4.97	-		0.0104 J	< 0.181	15.7	< 0.836	< 0.316	< 0.735	27.4	31.4	
B-4	5/3/2016	0,5	< 0,784	< 0.679	38.7	< 0,0732	< 0.0732	1.58	3.66	56,9	1.07			0.0486	< 0.167	0,998 J	< 0.773	< 0.293	< 0.679	14.9	12.5 B	
-	3/3/2010	1.5	< 0.797	2.91	290	0.264	0.151 J	11.5	3.5	5	6.99	\sim	~	0.0588	0.483 J	13.2	< 0.787	< 0.298	< 0.691	16.2	18.3	1
		0.5	~	*	1	-	÷	1	0	÷	0.834	*	+		÷	5	5	11.5		-	÷	
		1.5		- 8			-		~		5.01	- ×	~	-	~		-		8		-	
B-5	5/3/2016	4	< 0.850	2.7	118	0.442	0.267 J	27.6	8.17	15.3	6.77	(**).		0.0222 J	0.302 J	25.2	< 0.839	< 0.318	< 0.737	36.5	44.7	1
	3/3/2010	10	< 0.827	1.29 J	1.6	0.438	0.308 J	50.4	6.3	14.7	11.9	-	~	0.0332	< 0.176	38.5	1.61 J	< 0.309	2.02 J	25.2	37.4	*
		15	~			-	H	-	H		-	-	-		H	-	-	-		100		0
		20	-			(m)	+		8	+	100	8	3	-	8	1.811	19	i i i	~		ine -	0
B-6	5/3/2016	0.5	< 0.836	4.51	206	0.39	0.146 J	17,2	4.46	9.34	8.63	3(++)C	(+):	0.0524	1.41	18.5	< 0.825	< 0.312	< 0.724	23.4	29,4	1
		1.5	< 0.951	3.97	148	0.588	0.321 J	26.2	11.9	20.8	10.4	~	~	0.0494	< 0.203	41.5	< 0.939	< 0.355	< 0.825	37.6	61.4	1
		0.5	< 0,772	< 0.669	33.7	< 0.0720	< 0.0720	2.08	3.47	43.7	0.936	÷.		0.0714	0.213 J	0.929 J	< 0.762	< 0.288	< 0.669	14.6	11.5 B	
8-7	5/3/2016	1.5	< 0.905	5.48	273	0.586	0.642	17.7	11	148	356	5.08	< 0.450	0.163	0.568 J	30.3	1.03 J	< 0.338	< 0.784	28.3	151	
		4	< 0.818	4.56	126	0.509	0.296 J	27.5	5.42	12.4	7.34	(m) (m)	(**)	0.0437	< 0.175	21.8	< 0.807	< 0.305	< 0.709	32.4	44.7	-
Reported	Laboratory Detection Limits (RDL):	- 11	2	2	0.5	0.2	0.5	1	1	2	0.5	0.0171	0.45	0.02	0.5	2	2	1	2	2	5	1-1
Résid	ential / Commence/ ential / Commence/ els = < 9.8 ft, Tier 1 Levels		81/140	0.087 / 0.41 7.48***	2,900 / 1,900	40 / AU	39 / 41	8	21/27	3,200 7 1.4,000	80 / 160		j.	10/42	190 / 1.700	826 / 🔤	350 / 1.700	180 / 1.700	0.78 / 5.8	1000 / 600	13,000 / 100,000	0,001
Resid	d Screening Levels (ESL iential / Continential iis v9.8 tt, Tior 1 Levels (s) (1)	\$1/140	0.067 / 0.01 7.68***	15,000 / LOUMO	150 / 2,200	1977.560	*	19/25	3,100 / 47,000	m / 150	-	A	11 / 190	390 / 5,000	\$20 / 11,000	390 / S.MM	1995 / S,eau	0.76/12	14,000 / 600,000	23,000 / 350,000	0,00
																					s - Direct Exposure	*
Human Healt	ed Ecological Risk Office () th Risk Assessment - Note dettal / Communical		-	0.007 / 0.13 7,48***		35/210	52/73	56,000 / 370,000 **	-	-	80/250	-	1	1.874.5	-	-	-	190 ¥ 1,500		390/1100	-	
Regional Se	USEPA Region 9 creening Levels (RSLs) ⁽²⁾ limital / Communication		11/470	0.68 / 9.0 7.48***	15,000 / 326,000	100 / 2,800	71 / 860	126,000 / 1,000,000	28/ 450	3.500 / 47.000	400 / 200	-	~	167.66	100/d.mm	~	19075 800	10075.000	~	100/1.000	38.000 / 850.000	

1)

All soil results are in milligrams per Kilogram (mg/Kg)

Sampl	e Information											-17 Metals thod 6010 / 7										Cyania by EPA Mi
Sample ID	Sample Date	Depth (ft)	Antimony	Arsenic	Barium	Beryllium	Codmium	Chromium	Cobalt	Copper	Lead	Lead STLC-soluble (mg/L)	Lead TCLP-soluble (mg/L)	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	901.
	1	0.5		-		-		~			< 0.195	-	-	~	-	~		1 (te)		1.124.1		1.0
	1 1 1 1	1.5	-	~	-	-		- ~ ~ · · ·		-	8.47	1.1	144	~	1. W	-	1	1 Carlo		-	-	
	1.11	4	-	~		1.5	-		н.		7.66	14	(44)	-	-	~	1.1	-	- 44	141		
B-8	5/3/2016	15	-	~		-	-	\sim		4	-	2	2	-		-	~	-	**	4	-	10
		17	-	-	**	-	-	× 1	-	-	-	1	~			-	~	-	-44	191		0.
		20	-	-		-		\sim	ġ.	4	~	1	0	-	÷		1.1	-		-	÷	< 0
	-	23	-	. н	*	<u> </u>		×	н.		-	1.1		~	-	~	1.2	~	- 44	-		< 0.
	1 2000	0.5	-				4	$\sim \sim \sim$	2	4	2.27	-	144		-	104	~ ~ ~	-		-	÷	-
B-9	8/18/2016	1.5	-	-	**			~	-	143	1.5	(14)	-	-	-	~	~	-	- 44	141	1.00	1.00
	-	4	-	9.	-		1040	->	- 241-		10.3			· · · ·	1.192.1	1.2-	1.20			2.28 ~		10
	1	0.5	-	14	**	-		~			35.9	14)	-	~		~	~	~	- 44	141	-	
B-10	5/3/2016	1.5	-	~		-	-	~	-	-	23.2	-	140	~	+	~	~	-	**		-	
		4	-					1.12			6.77	1.1	142	1	2.1	1.20	1		- 44		14	
	-	0.5	< 0.786	< 0.681	39.3	< 0.0734	< 0.0734	1.63	3.55	40.7	0.968	-	-	0.0598	< 0.168	0.999 J	< 0.775	< 0.293	< 0.681	19.6	13.5	< 0
		1.5	< 0.893	5.02	389	0.473	0.825	30.4	9.87	49.1	206	11.4	< 0.450	0.125	0.503 J	36.3	< 0.881	< 0.333	< 0.774	34.6	235	1
		4	< 0.854	2.48	143	0.393	0.228 J	30.1	5.29	12.8	6.43	-	14	0.00944 J	0.263 J	18.6	< 0.843	< 0.319	< 0.740	34.1	40.3	3
8-11	5/4/2016	10	< 0.816	2.89	137	0.331	0.242 J	36.8	7.72	6.78	3.79	-		0.0415	0.195 J	47	<0.805	< 0.305	< 0.708	20.6	22.1	1
	1.1.1.1.1.1.1	15	-	÷		-	4	-	û.		-	÷	~	4	-	-	-	-		-	-	0
		20	~	~		-	-	~			-	-	~	- 54	-	~	1 × 1	~			-	D.
	1.12	24	-	÷ .				~	-			~	~	1.64	-	-	1.1		-	12	1	<0
	Laboratory	28	-	~	-			1			-	1 × 1	~	- 64	-	~	1000	~		-		< 0.
Reported	Detection Limits (RDL)	r	2	2	0.5	0.2	0.5	1	1	2	0.5	0.0171	0.45	0.02	0.5	2	2	1	2	2	5	0
Resid	ential / Commercial ential / Commercial els = < 9.8 ft, Tier 1 Levels		11/140	0.067 / 0.01 7.48***	2,900 / 1390	40 / 40	19/41	-	31 / 27	3,100 / 14,000	80 / 1MD	-	-	13742	190 / 1.700	H20/m	35071.700	310 / 1.700	0.78/3.0	600 / 600	13,000 / 100,000	0,0030
Resid	d Screening Levels (ESU Initial / Commercial Ils 59,8 It, Tier 1 Levels)	(s) ⁽¹⁾	31/140	0.067 / 0.11 7.48***	15,000 / 110,000	150 / 2,200	99 / 580	4	49/258	3,100 / 47,000	80 / 160		-	£63.940	310) / 5 1000	#20 / 11,000	350 / 5,800	11075,000	0.76/12	14,000 / 404,490	23,000 / SSN.(mm	0,0036
-				-															-		s - Direct Exposure	
Human Heat	ed Ecological Risk Office (th Risk Assessment - Not iontial / Commercial		-	0.067 / 0.25 7,48***	5	15/210	52/73	36,000 / 179,000 **	-	÷	80/320	5	~	10/45	-	-	-	390 / 1,500	-	390/i.000	÷	
Regional S	USEPA Region 9 creening Levels (RSLs) ⁽²⁾		11 / 470	0.68 / 3.0 7,48***	15.000 / 220,000	160 / 7.300	71/080	120,000 / 1,000,000	23 / 190	1,100 / 47,000	400 / 300	÷	~	13746	100 / 3.000	-	399/5.800	3997 5.899	-	100/1.000	23.000 / 850.000	2.3

All soil results are in milligrams per Kilogram (mg/Kg)

Samp	le Information											-17 Metals ethod 6010 / 7										Cyania by EPA M
Sample ID	Sample Date	Depth (ft)	Antimony	Arsenic	Barlum	Beryllium	Codmium	Chromium	Cobalt	Copper	Lead	Lead STLC-soluble (mg/L)	Lead TCLP-soluble (ing/L)	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	901
	1	0.5	2.67	4.79	429	0.259	2.07	28.6	8.92	68.2	376	< 0.0171	141	5.08	0.698	28.8	< 0.827	0.566 J	< 0.726	39.3	413	< 0.0
B-12	5/3/2016	1.5	< 0.886	5.12	145	0.589	0.344 J	31	12.6	22.9	63	0.31	14	0.0697	0.6	42.2	1.26 J	< 0.331	< 0.767	42.5	75.5	0.0
		4	< 0.837	2.16 J	134	0.417	0.323 J	27.6	8.42	15.2	6.46	141	(24)	0.0121 J	0.436 J	23.9	< 0.826	< 0.313	< 0.726	36.9	42.9	
		0.5		*			4	····	100 C		0.293 J		144									-
B-13	5/3/2016	1.5	~			-	-	~	-		10.1	141	(in)	~	-	~	~	1.1	44	1.00	191	1.11
		4	5	5 - e1 - C		200	4.0	->	- 141-		6.36		144	-		1-2-	1-2-	1.54		2.28.24		1
_		0.5	~	~	- 14		-		ш	-	3.87	144	144)	~	£.	~	~	~	44.	14	-	
		1.5	~					· · · ·	-		12.3	14	14	~			2	÷	-		1.2	
8.14	6/2/2016	4	< 0.827	2.09 J	113	0.377	0.241 J	22.8	6.08	13.2	5.94	(4)	(4)	0.0114 J	< 0.176	18.1	< 0.816	< 0.309	< 0.717	30.5	34.5	-0.0
8-14	3/3/2010	10	0.866 J	4	151	0.44	0.313 J	214	21.4	15.7	4.46	1.1.1.1	14	0.03	0.985	161	< 0.839	< 0.317	< 0.737	37.7	44.6	-0.4
		15	~	3	-	-	141	~	14		a	~		~		~	100	~		1.1.1	1.4	-0.0
B-14 5/3/2016 B-15 5/3/2016 Laboratory Reported Detection Limits (R Environmental Screening Levels)		20	-	-	-	-	<u> </u>	*	9		-	-	~	-	· · · ·	-	-		**	-	-	< 0
1.1.1.1.1	1.00	0.5	< 0.899	< 0.779	78.4	< 0.0839	< 0.0839	6.69	11	68.5	< 0.228	1.3	\sim	0.0881	< 0.192	3.51	< 0.887	< 0.336	< 0.779	85.6	47.8	-0.0
B-15	5/3/2016	1.5	< 0.909	6.29	212	0.752	0.291 J	51.4	11.3	23.1	9.44	12	14	0.0376	0.832	52.5	< 0.897	< 0.339	< 0.788	66.6	78.4	< 0
		4	< 0.864	4.24	182	0.587	0.702	58.4	17.1	18.8	6.64	(H-14)	(#)	0.0130 J	0.964	49.8	1.29 J	< 0.323	< 0.749	60.5	69.6	1
Reported			2	2	0.5	0.2	0.5	1	1	2	0.5	0.0171	0.45	0.02	0.5	2	z	1	2	2	5	0
Resid	al Screening Levels (ESLs dential / Commercial oils = < 9.8 ft, Tier 1 Levels		31 / 140	0.067 / 0.01 7.48***	2,900 / 2,900	40 / 40	39 / 41	1.44	33/27	3,100 / 14,000	80 / 160	-		39/40	590 / 1.709	1120 / 11	3807 1700	390 / 1.700	0.78/31	600 / 600	23,000 / 100,000	0,0034
Resid	al Screening Levels (ESLs dential / Commercial oils 19:8 It, Tier 1 Levels)	s) ⁽¹⁾	81/140	0.067/0.11 7.48***	15,000 / 110,000	150 / 3,200	39 / Sec	1	11/258	3,100 / 47,000	407.160	-	,	111.144	3110 / 5, 1002	#20 / 11,000	390 / 5 MW	19675,600	076/12	14,000 / 609,000	25,000 / 1041.0mm	0,003
			-																		- Direct Exposure	-
Human Heal	nd Ecological Risk Office (* Ith Risk Assessment - Note dontial / Commercial		-	0.067 / 0.25 7,48***		15/210	52/74	36,000 / 179,000 **		÷	80/320	-	0	10/45	0	÷		196 / 1,500		390/1000	÷	
Regional S	USEPA Region 9 Screening Levels (RSLs) ⁽²⁾		11 / 470	0.6#/9.0 7.48***	15.000 / 220.000	100 / 2.300	71/080	120,005 / 1,000,000	13 / 350	1.100 / 17,000	400 / 800			11/40	890 / 1.800	-	100 / 5.800	30073.000	-	590/3.000	23.000 / 150.000	3

All soll results are in milligrams per Kilogram (mg/Kg)

Samp	le Information											-17 Metals thod 6010 / 7										Cyanide by EPA Met
Sample ID	Sample Date	Depth (ft)	Antimony	Arsenic	Barlum	Beryllium	Codmium	Chromium	Cobalt	Copper	Lead	Lead STLC-soluble (mg/L)	Lead TCLP-soluble (mg/L)	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	9012
P-1	5/5/2016	0.5	< 0.776	< 0.672	29.7	< 0.0723	< 0.0723	1.76	2.88	24.5	0.412 J	-	×	0.0561	< 0.165	0.959 J	< 0.765	< 0.289	< 0.672	13.5	9.73	< 0.04
P-1	5/5/2016	1.5	< 0.901	5.39	245	0.504	0.561 J	28.6	10.5	31.1	123	4.48	(H)	0.279	0.498 J	37.7	< 0.889	< 0.337	< 0,781	36.5	202	0.66
	5/5/2016	0.5	< 0.789	< 0.684	44.2	< 0.0736	0.0761 J	2.43	4.1	58.9	0.746	+	-	0.0438	< 0.168	1.57 J	< 0.778	< 0.295	< 0.684	19.3	12.7	< 0.0
	3/3/2010	1,5	< 0,903	4.51	214	0.443	1.8	22.7	6.96	66.9	211	0.29	*	1.53	< 0.193	26.4	< 0.891	< 0.337	< 0.783	26.5	565	11
P-2		4	<u>in</u>	14 I				ų.		-	17.3		124	÷.	-	é.	÷			12		100
	8/18/2016	6		~	**	-		~	94		6.83	~	~		-	~	~	~		1.00	-	-
_		8		1-141-		2-24	2040	1-20-0			6.27	1-20	- 2		1-390-1	1-28.1	1-28-			2-2+2-5	1000	104
P-3	5/5/2016	0.5	< 0.786	< 0.681	29.2	< 0.0734	< 0.0734	2.1	4.86	61.2	0.352 J	· · · ·		0.139	< 0.168	1.33 J	< 0.776	< 0.294	< 0.681	17.8	11.6	< 0.0
	3,3,2010	1.5	< 0.964	5.6	149	0.663	0.282 J	35.2	12	25.3	10.9			0.0543	0.667	46	< 0.952	< 0,360	< 0.836	46.8	75.8	< 0.0
P-4	5/5/2016	0.5	< 0.889	4.38	142	0.502	0.384 J	26.5	11.4	31.1	43.9	-	1	0.125	0.328 J	35.3	< 0.877	< 0.332	< 0.770	38.2	94.8	< 0.0
	3/3/2010	1.5	< 0.848	3,94	131	0.538	0.329 J	26.5	13.3	19.8	9.81		(11)	0.0363	0.249 J	39.7	< 0.836	< 0.316	< 0.735	35.6	62.7	0.045
P-7	5/5/2016	0.5	< 0.916	4.22	127	0.525	0.277 J	24.7	11.7	21.5	15.8	÷	1	0.0452	< 0.195	39.2	< 0.903	< 0.342	< 0.794	33.9	61.2	< 0.0
1.2	3/3/2016	1.5	< 0.854	1.93 J	110	0.344	0.228 J	18	8.3	12,7	5.52			0.0188 J	< 0.182	17.4	< 0.843	< 0.319	< 0.740	28	29.9	< 0.0
Reported	Laboratory Detection Limits (RDL):	_	2	2	0.5	0.2	0.5	1	i	2	0.5	0.0171	0.45	0.02	0.5	2	2	1	2	2	5	0,2
Heste	al Screening Levels (ESL dential / Commercial oils = < 5.5 ft, Tier 1 Levels		85,7340	0.067 / 0.41 7.48***	2,900 / 1,900	90 / AG	19/41	-	#1/17	9,100 / 14,000	807.100	-	-	387.48	350 / 1.700	8202	390 / 1.700	110 / 1.700	0.78 / 54	-000 / 000	13,000 / 100,000	0,0036/
Resid	al Screening Levels (ESI: dential / Contemportal aiis v9.8 ft, Tier 1 Levels (s) (1)	95 / 580	0.067/0.03 7.48***	15,000 / 270,000	150 / 2,2(8)	99 / SMO	~	19/25 8	3,400 / 47,000	00/160.	-		18/190	340 / Ş,MQD	820 / 11,000	390 / S.MM	396 / S,800	0,78/12	14,000 / 600,000	25,000 / 35H,000	0,0036 /
																					Direct Exposure	(\$#)
Human Heal	nd Ecological Risk Office () Ith Risk Assessment - Natu dential / Commercial		-	0.067 / 0.25 7.48***	-	15/210	52/75	56,000 / 170,000 **	-	-	- 80 / 820	÷	4	LOYAS			~		-	590 / Lanc	-	
Regional S	USEPA Region 9 Screening Levels (RSLs) ⁽²⁾ dontial / Communicate	_	11/070	0.68 / 3:0 7,48***	15,000 / 220.000	100 / 3,300	73 / 960.	120,000 / 1,800,000	is/150	3,100 / 12,000	100 / 800	-	-	14/44	390/1.000	÷	390 / 5-800	100 / 5.600	-	390 / (18.000 / 150.000	3.7

Table 2: Soil - Metal Analytical Results Additional Site Assessment 25 East Fifth Street, Watsonville, CA

All soll results are in milligrams per Kilogram (mg/Kg)

Samp	le Information											17 Metals										Cyanida by EPA Met
Sample ID	Sample Date	Depth (ft)	Antimony	Arsenic	Barium	Beryllium	Codmium	Chromium	Cobalt	Copper	Lead	Lead STLC-soluble (mg/L)	Lead TCLP-soluble (mg/L)	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	9012
		0.5		-	-	~		-	-		7.4	-			-	- 14						
DG-1	8/18/2016	1.5	~	e e				ê.	Ĥ		7.06		124				-	-		12		-
_	10000	4	1 × 1	-			100			1940	K3.4		(44)		-	-	1.1	1. 10	144		100 H C	-
Dear The		0.5							н.		194			-	· • • · ·		~	÷	-	-	-	-
DG-2	8/18/2016	1.5	~	*	-			-	н	- +	18.8	14)	141		-	-	-	-	- 44			
		4	1	(e			- 14 C		- 10-	4	8.1	- (#) - j	14		- H	10.9				0.0801	1040	3 ~÷
		0.5	-		-	-	4	-	I.	÷ -	382			-		**	~	~	- 44	14	-	-
DG-3	8/18/2016	1.5	~	÷		-		÷.	Ξ.	121	15.5	- H - 1	14	-	-	-	1	~		12	÷.	÷
		4	-		-		- + C	-	-	- + C.	8.25	-	141	-		-	~	~	- 44	+C	1 = 1 0 < _	1
	1.000	0.5		· · · ·	-	-		2	÷		1.3		~~~~	-	9 (F)	-	-	-	**	- + · · ·	-	-
DG-4	8/18/2016	1.5	~	~	-	-	4	-	-	-	1.56	142	(4)	-	*	-	~	-	- 44	4	- A	
		- 4	· · · · ·	- +			- (A) -	-	- 9	- (A)	9.4	-		-			-	÷ ÷ ÷ · · ·				
Reported	Laboratory Detection Limits (RDL):		2	2	0.5	0.2	0.5	11	1	2	0.5	0.0171	0.45	0.02	0.5	2	2	1	2	2	5	0.25
Resid	al Screening Levels (ESL dential / Communeal oils = < 9.8 ft, Tier 1 Levels		31/140	0.067 / 0.91 7.48***	2,000 / 1,500	40 / 40	39/41	-	25/27	3,100 / 14,000	80 / 160	-	-	39/42	390 / 1,700	#20 / m	390 / 1,700	390 / 1,700	0.78/1.8	900 / 800	13,000 / 100,000	0 .0.0036 / 0
Resid	al Screening Levels (ESL dential / Commercial ais +9.8 ft, Tier 1 Levels)	s) ⁽¹⁾	11 / S40.	0.067 / 0.11 7.48***	15,000/120,000	150/2,200	99 / SM	-	11/258	3,100 / 47,mm	#6/168	-	-	18/190	396 / 5,990	820 / 15,000	350 / S.MM	398 / 5,888	0.78/12	14,000 / 100,000	29,000 / 350,(mm	0,0036/0
-)											s - Direct Exposure	S.1/3
Human Heal	nd Ecological Risk Office (Ith Risk Assessment - Noti Idential / Commence		-	0.067 / 0.25 7,48***	-	15/210	52/74	36,000 / 179,500 **		1	80/300	-	-	10/45		~	~	396 / 3,600		390/1000	-	-
Regional S	USEPA Region 9 Screening Levels (RSLs) ⁽²⁾		11 / 470	0.68/30 7,48***	15.000 / 370.000	160 / 2,300	71 / 880	120,000 / 1,000,000	11 / 150	3.100 / 47,000	400 / 300	-	~	13746	390 / 1.800	L.e.	390/5.800	100 / 5.800		390 / 1.800	33.000 / 150.000	a 2.7/

Notes

1 + Environmental Screening Levels (ESIs): from Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final. February 2015). The ESIs are intended to provide quantitative guidance on whether remediation of contamination is wurranted. The ESIs used in this table were obtained from the above referenced document. Table A. Shallow Soils (<3m), Groundwater 15 a current or potential Source of Drinking Water.

2 = Regional Screening Levels (RSIs): from the USEPA Region 9 RSI. Tables (updated May 2016), and the User's Guide (November 2015). The RSIs are risk-based screening levels used for screening sites, calculating risk factors and potentially as cleanup goals once a site has been characterized.

*= Analysis of the 95% Upper Confidence Limit for assence in 16 shallow soil samples that were collected to establish background concentrations for metals in the Watsonville area yields a concentration of 7.6 mg/kg. Analysis of the 95% Upper Confidence Limit for assence in 16 shallow soil samples yields a concentration of 6.3 mg/kg (see Appendix F of this report for reference and 95% UCL analysis). The data confirms that the on-site concentrations of arsenic fall within the range of naturally occurring background concentrations for this area of Watsonville.

**= Chromium (Total) has no threshold so Chromium III threshold has been placed instead. (Chromium (VI) thresholds for RSL = 0.3 / 6.3 ; (Residential / Commercial)

**** A 2003 background assessment for metals in shallow soil was completed for the Watsonville area by Uribe & Associates: Remedial Investigation Report, Watsonville 2 Former Manufactured Gas Plant Site, Pacific Gas and Electric Company, GC Yard 11, Walker Street, Watsonville, California, September 4, 2003. Analysis of the 95% Upper Conlidence Limit for arsenic in 14 shallow soil samples that were collected to establish background concentrations for metals in the Watsonville area yields a concentration of 7.48 mg/kg. respectively (see Appendix X of this report for details). The data confirms that the on-site concentrations of arsenic fail within the range of naturally occurring background concentrations for this area of Watsonwi

-5

STLC = Soluble Threshold Limit Concentration

TCLP = Toxicity Characteristic Leaching Procedure

J = Laboratory reports that the detection value is between MDL and PQL and should be considered to be an estimate

B = Laboratory reports that the same analyte is found in the associated blank.

< X = Constituent not detected above the laboratory's Method Detection Limit (MDL), X.

K:\AJOB\AJOB\Zx404.Oneto-watsonville\Tables\Table 2 - Soil Metals.xisxSoil - Metals 11/18/2016

Table 4: Grab Groundwater - PAH Analytical Results Additional Site Assessment & Semi-Annual Monitoirng

25 East Fifth Street, Watsonville, CA

All soil results are in micrograms per liter (ug/L)

	Sample Info	ormation		1						Pol		atic Hydro Method 827	ocarbons (PAHs oc-sim)					
Sample ID	Sample Date	*Depth to Groundwater (ft, bgs)	Temporary Screen Interval (feet, bgs)	Acenaphthene	Acenaphthylene	Anthracene	Benzo[g,h,i] perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]pyrene	Benzo[a] anthracene	Benzo[b] fluoranthene	Benzo[k] fluoranthene	Chrysene	Dibenzo[a,h] anthracene	Indeno [1,2,3-cd, pyrene
GW-1	3/22/2017	23.5	19 - 29	10.3	4.93	0.267	0.00326 J, B	< 0.0157	0.488	84,5	0.243	0.0380 J	< 0.0116	< 0.00410	< 0.00212	< 0.0136	< 0.0108	< 0.00396	< 0.0148
GW-1	5/4/2016	27.9	22 - 32	0.446	0.256	0.0480 J	0.00393 J, B	< 0.0157	0.176	9.27	0.0673 B	< 0.0117	< 0.0116	< 0.00410	< 0.00212	< 0.0136	< 0.0108	< 0.00396	< 0.014
1	3/22/2017	22.4	23 - 27	< 0.0100	< 0.0120	< 0.0140	0.00386 J, B	< 0.0157	< 0.00850	0.128 J, B	0.00848 J	< 0.0117	< 0.0116	< 0.00410	< 0.00212	< 0.0136	< 0.0108	< 0.00396	< 0.014
GW-2	5/4/2016	27	24 - 34	0.0191 J	< 0.0120	0.0169 J	0.00459 J, B	< 0.0157	0.0377 J	0.454	0.0379 J, B	< 0.0117	< 0.0116	0.00789 J	0.00338 J	< 0.0136	< 0,0108	< 0.00396	< 0.014
	3/22/2017	25.8	24 - 27	0.25	0.126	0.185	0.00732 J, B	0.173	0.28	2.78	0.297	0.156	0.0158 J	0.0531	0/0184 /	< 0.0136	0.0328 J	< 0.00396	< 0.014
GW-3	5/4/2016	26.5	24 - 34	7.85	3.94	5.91	0.0923	3.45	7.35	34.7	7.38	3,11	0.377	0.733	0.309	0.159	0.45	0.0367)	0.0886
GW-4	5/4/2016	26.6	20 - 30	0.0517	0.0536	0.0146 J	0.00404 J, B	< 0.0157	0.0262 J	0.106 J	0.0197 J, B	< 0.0117	< 0.0116	0.00806 J	0.00352 J	< 0.0136	< 0.0108	< 0.00396	< 0.014
GW-5	5/4/2016	22.5	24 - 34	0.0146 J	0.0149 J	< 0.0140	0.00509 J, B	< 0.0157	0.0199 J	0.165 J	0.0297 J, B	< 0.0117	< 0.0116	0.00921 J	< 0.00212	< 0.0136	< 0.0108	< 0.00396	< 0.014
	Reported Detection	n Limit (RDL) :		0.05	0,05	0.05	0.05	0.05	0.05	0.25	0.05	0,05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	Water Bo Environmental Scre (Groundw	ening Levels (1)		20	30	0.73	0.1	ß	3.9	0.17	4.6	2	0.014	0.027	0.012	0.017	0.049	0.0034	0.034
	Maximum Contamino	nt Levels (MCLs) th		NE	NE	NE	NE	NE	NE	17 ⁽³⁾	NE	NE	0.2	NE	NE	NE	NE	NE	NE

Notes

1 = Environmental Screening Levels (ESLs): from User's Guide: Screening for Environmental Concerns at Sites With Control Board (February 2016). http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/ESL%20Workbook_ESLs_PDF_Rev2.pdf The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted.

2 = Maximum Contaminant Levels (MCLs): MCL's are drinking water standards established in Title 22 of the California Code of Regulations.

3 = Napthalene's objective is based on its established health-based advisory level, currently called a "notification level". These notification/action levels have been used to provide information to public water systems and others about certain non-regulated chemicals in drinking water that lack maximum contaminant levels (MCLs). When chemicals are found at concentrations greater than these levels, certain requirement and recommendations apply.

*= Depth to groundwater may not neccesarilly be stabilized.

bgs= below ground surface

< X = Constituent not detected above the laboratory's Method Detection Limit (MDL), X.

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered to be an estimate.

B = Laboratory reports that the same analyte is found in the associated blank.

NE = Not Established

BOLD = Result exceeds the Commercial ESL threshold.

Table 5: Grab Groundwater - TPH, VOC, Ammonia as N, & Cyanide Analytical Results

Additional Site Assessment & Semi-Annual Monitoring

25 East Fifth Street, Watsonville, California

All groundwater sample results are in parts per billion (ug/L).

	Groundwater Sampl							Laborator	y Analytical Re	sults				
			-	Hy	droCarbon Rai	nges	1	Vola	ntile Organic Co	mpounds (VOC	's by EPA 802	1)		-
Sample ID #	Sample Date	*Depth to Groundwater (ft, bgs)	Temporary Screen Interval (feet, bgs)	Gasoline Range C5-C12	Diesel Range C12-C22	**Motor Oil Range C22-C40	Benzene	Toluene	Ethyl- benzene	Xylene (total)	МТВЕ	1,2-Dibromoethane	Ammonia as N	Cyanide
GW-1	3/22/2017	23.5	19 - 29	250	1,490	516	0.827 J	1.57	2.87	19.9	< 0.367	< 0.381	50,000	28.2
GW-1	5/4/2016	27.9	22 - 32	< 30.4	546	361.1	< 0.331	< 0.780	< 0.384	< 1.06	< 0.367	÷	55,000	75
GW-2	3/22/2017	22.4	23 - 27	< 30.4	48.8 J	< 66.0	< 0.331	< 0.412	< 0.384	< 1.06	< 0.367	< 0.381	< 280	2.86
GW-2	5/4/2016	27	24 - 34	< 30.4	43.6 J	< 66.0	< 0.331	< 0.780	< 0.384	< 1.06	< 0.367		< 280	< 1.80
auto	3/22/2017	25.8	24 - 27	< 30.4	336	216	< 0.331	< 0.412	< 0.384	< 1.06	< 0.367	< 0.381	1,100	604
GW-3	5/4/2016	26.5	24 - 34	< 30.4	870	441.2	0.333 J	< 0.780	< 0.384	1.50 J	< 0.367		6,400	237
GW-4	5/4/2016	26.6	20 - 30	< 30.4	78.8	53.5 J	< 0.331	< 0.780	< 0.384	< 1,06	< 0.367		17,000	60
GW-5	5/4/2016	22.5	24 - 34	< 30.4	< 71.3	< 142.6	< 0.331	< 0.780	< 0.384	< 1.06	< 0.367	-	4,000	21
	Laboratory Reported De	tection Limit (RDLs).	-	100	100	200	1.0	'S.Q	1.0	3.0	1.0	1.0	280	5.0
	Water Br Environmental Scre Groundw	ening Levels 121		1	00	50,000	1.0	40	13	20	5.0	0.05	NE	150
	Maximum Contamina	nt Levels (MCLs) ⁽²⁾			-		1	150	300	1,750	5	0.05	NE	150

NOTES:

WQG = Water Quality Goals: Goals establised by the CRWQCB Central Coast Region based on Maximum Contaminant Limits (Department of Health Services) or taste & odor threshold limits.

1 = Environmental Screening Levels (ESLs): from User's Guide: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, set by the San Francisco Bay Regional Water Quality Control Board (February 2016). <http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/ESL%20Workbook_ESLs_PDF_Rev2.pdf > The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted.

2 = Maximum Contaminant Levels (MCLs): MCL's are drinking water standards established in Title 22 of the California Code of Regulations. Values referred to as MCLs for lead and copper ore not actually MCLs; instead, they are called "Action Levels" under the lead and copper rule

BOLD = Result exceeds the MCL or ESL threshold.

bgs = below ground surface MTBE = Methyl-tert-Butyl-Ether

ND = Not detected at or above the lab's practical quantitation limit. * = Depth to groundwater may not neccesarilly be stabilized.

** = C22-C32 and C32-C40 ranges combined for Motor Oil Hydrocarbon Range results.

NE = Not Established

< X = Constituent not detected above laboratory's Method Detection Limit (MDL), X.

(a) = Micro-Extraction -No TPH as Motor Oil pattern present at 200 ug/L.

Table 3: Soil Vapor - Volatile Organic Compounds Analytical Results Additional Site Assessment & Semi-Annual Monitoring 25 East Fifth Street, Watsonville, CA

All sail vapor results are in micrograms per meter cubed. (ug/m *)

s	ample Information		Total Petroleum				tile Organic Compound watory Analysis by EPA Meth				Leak Check Monitoring (Isopropyi Alcohol)	
Sample ID	Sample Date	Depth (feet below ground surface)	Hydrocarbons as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Other VOCs	Field Shroud Concentration (avg., in ppm)	Laboratory Results (in ug/m ²)	Calculated Leakage (percent)
	3/30/2017	1.20	< 290	63	59	64	170	< 82	All Other VOCs = ND	15.5	< 3.5	< 0.01
	5/12/2016	.s'	< 280	< 5.9	< 4,5	< 3.9	<12	< 150	All Other VOCs = ND	13,3	c 5.6	< 0.02
SV-1 by EPA Method TO-15)	8/8/2017		< 190	<1.1	< 1.4	< 2.6	< 10	< 19	1,2-Dibromoethane = < 2.9 All Other VOCs = ND	301.4	< 3.4	< 0.00
	3/30/2017	10'			*No Flow Conditi	ions - Water Obse	erved in Sample Tub	ing During Purge		1.1.1.1.	~	
	5/12/2016		< 280	< 5.8	< 4.4	< 3.9	< 12	<150	1,2-Dibromoethane = 99 PCE = 65 ¹¹ All Other VOCs = ND	26.3	< 6.5	< 0.01
	3/30/2017	5'	< 310	< 3,3	< 2.5	< 2.2	< 6.8	< 86	All Other VOCs = ND	30.3	< 3.7	0.00
	5/12/2016		< 290	17'	20 '	< 4,0	< 12	< 160	All Other VOCs = ND	78	540	0.28
SV-2 (by EPA Method TO-15)	8/8/2017		< 190	< 1.1	<1.3	< 2.5	< 9,9	< 19	All Other VOCs = ND	602.55	< 3.3	< 0.00
	3/30/2017	10'	1			*No Flow	Conditions			111.00		
	5/12/2016		< 280	< 6.0	< 4.5	< 4.0	<12	< 160	Styrene = 31 ¹ All Other VOCs = ND	8.8	< 6.7	< 0.03
Labora	tory's Practical Quantitation Limit	(PQ)/	200	4	1	ŝ	s,	20	Vanges		- 1	-
	ng Levels ⁽¹⁾ Residential Aftern ercial Afternuation Factor:		50,000 300,000	48 420	369,000 1,300,000	560 4,900	52,000 440,000	¥1 360	1,2-Dibromoethane: 2.3 / 20 PCE: 340 / 2,100 Styrene: 378,000 / 3,400,000 Acetone: 15,000,000 / 31,000,000 All Others: Vary or Not Established			
	S EPA Regional Screening Leve Regional / Commercial 3.03 ATTENUATION FACTOR) ⁽²⁾		Not Established	12 53	110,531 733,633	30 ISI	3 381 14,667	2.5 12	1,2-Dibromoethane: 9.157/ 0.66 PE: 1.57/ 2,557 Styrene: 3:.01111/ 146,667 Propylen: 10,511/ 433,831 Acetone: 1.065 Stir / 4,566,567 All Others: Vary or Not Stabilished			
Riside	TSC-Modified Soil Gas Leve Near Source" Threshold Limits Initial ATTENUATION FACTOR Inercial ATTENUATION FACTOR	0.007	Not Established	49 420	155,000 1,300,000	·559 4.900	50,000 440,000	¥Z 360	1,2-0ibromoethane: 1,35 / 20 PCE: 946 / 2,100 Styree: 470.000 / 3,500.000 Propylene: 1,350,000 / 13,000,000 Actione: 16,000,000 / 140,000,000 All Others: vary or Artis tabilished			
	"Subslab" Threshold Limits Regarded / Commercial 2.05 ATTENUATION FACTOR) ⁽¹⁾	4	Not Established	1.9 6	6,200 26,000	22 98	2,000 6,800	a 7	1,2-Dibromoethane: 0.094 / 0.4 PCI: 5.6 / 42 Styren: 11,000 / 78:000 Propylene: 61.000 / 280.000 Acctone: 16.000 / 280.000 Acctone: 16.000 / 2,300.000 All Others: vary of Not Stabilished			
Risk	Site-Specific based Soil Gas Screening Leve @5 ft 0p1/@15 ft bgs	45 ⁽⁴⁾	850,000 2,000,000	3,100 7,300	760,000 2,300,000	s9,000 97,000	320,000 780,000	3,400 8,800	Styrene: 3,300,000 / 9,200,000 Acetone: 50,000,000 / 180,000,000 All Others: Not Established			

Table 3: Soil Vapor - Volatile Organic Compounds Analytical Results Additional Site Assessment & Semi-Annual Monitoring 25 East Fifth Street, Watsonville, CA

All sail vapar results are in micrograms per meter cubed. (ug/m *)

s	ample Information		Total Petroleum				tile Organic Compound ratory Analysis by EPA Meth				Leak Check Monitoring (Isopropyl Alcohol)	
Sample ID	Sample Date	Depth (feet below ground surface)	Hydrocarbons as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Other VOCs	Field Shroud Concentration (avg., in ppm)	Laboratory Results Drug/m ⁸)	Calculated Leakage (percent)
	8/8/2017		< 220	<1.3	< 1.5	< 2.9	<11	< 22	All Other VOCs = ND	183	< 3.8	< 0.00
	3/30/2017	5'				*No Flow	Conditions				-	
SV-3	5/12/2016		< 290	27 '	67	37 1	210	< 160	n-Heptane = 13 ¹ All Other VOCs = ND	34,8	< 6.8	< 0.01
(by EPA Method TO-15)	8/8/2017					No Flow	Conditions					
	3/30/2017	10'				*No Flow	Conditions					
	5/12/2016		6,400	170	200	69 ³	370	< 150	Propylene = 1,500 All Other VOCs = ND	38.1	< 6.5	< .0.01
	3/30/2017		< 280	< 3.0	< 2.3	< 2.0	< 6.1	< 78	All Other VOCs = ND	12.1	< 3.3	< 0.01
	5/12/2016	5'	< 280	< 6.0	< 4.5	< 4.0	< 12	< 160	All Other VOCs = ND	15.7	< 6.7	< 0.02
SV-4 (by EPA Method TO-15)	8/8/2017		< 200	<1.2	< 1.4	< 2.7	<11	< 20	All Other VOCs = ND	640.9	< 3.5	< 0,00
-	3/30/2017	10'				*No Flow	Conditions			1	-	
	5/12/2016		< 270	< 5.8	< 4,4:	< 3.8	< 12	< 150	All Other VOCs = ND	71.2	< 6.4	< 0.004
Laborat	tory's Procescol Quantitation Limit	(PER)	200	1	a i	ŧ.		. 20	Vieloui	-		-
Environmental Screening Commu	e Levels ⁽¹⁾ Residential ATTEN ercial ATTENUATION FACTOR:	VATION FACTOR: 0,002 0.001	50,000 <u>100,000</u>	48 420	160.000 1,300,000	560 4,900	52,000 440,000	*1 350	1,2-Dibromoethane: 1,3 / 20 PCE: 340 / 3,100 Styrene: 3470,100 / 3,400,000 Actober 15,000,000 / 30,000,000 All Dhers: vary or Not Established			
	EPA Regional Screening Leve Regional / Communical 1.03 ATTENUATION FACTOR)		Not Established	12 53	170,031 738,033	0 10	3, 381 14,667	×1 12	1,2-Dibromosthane: (1,51),0,52 PE: 167,1,557 Styrene: 33,433,45;146,667 Propylene: 10,331,453,411 Acetone: 1,665,687,4,666,587 All Others: vary or Not Stabilished			
Biskin	TSC-Modified Soil Gas Leve Near Source" Threshold Limits Initial ATTENUATION FACTOR Initial ATTENUATION FACTOR	0.002	Not Established	49 420	LSS,000 1,300,000	1550 4,900	150,000 440,000	NZ 350	1,2-0ibromoethane; 1,35 / 20 PCE: 94// (2,100 Styrene: 470.000 / 3,300.000 Propylene: 1,100,000 / 13,000,000 Acetone: 16,000 / 140,000,000 All Others: vary of Acet Stabilished			
	"Subslab" Threshold Limits Readantial / Commercial LOS ATTENUATION FACTOR) ⁽¹⁾		Not Established	1.9 8	6,200 26,000	22 98	2,000 6,800	.a .a	1,2-Dibromoethane: 0,0% / 0,4 PCE: 9.6 / 42 Styren: 19,000 / 75,000 Propylene: 51,000 / 260,000 Acetone: 160,060 / 2,300,000 All Others: vary of Nob Established			
flisk-l	Site-Specific based Soil Gas Screening Leve @5 ft 061/@15 ft bgs	ib ^{ie,}	850,000 2,000,000	3,100 7,300	960,000 2,300,000	s9,000 97,000	320,000 780,000	3,400 8,800	Styrene: 3, 500,000 / 5,200,000 Acetone: 10,000,000 / 180,000,000 All Others: Not Established			

Table 3: Soil Vapor - Volatile Organic Compounds Analytical Results Additional Site Assessment & Semi-Annual Monitoring 25 East Fifth Street, Watsonville, CA

All sail vapar results are in micrograms per meter cubed (ug/m *)

Si	ample Information		Total Petroleum				tile Organic Compound watery Analysis by EPA Meth				Leak Check Monitoring (Isopropyl Alcohol)	
Sample ID.	Sample Date	Depth (feet below ground surface)	Hydrocarbons as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Other VOCs	Field Shroud Concentration (avg., in ppm)	Laboratory Results (in ug/m ²)	Calculated Leakage (percent)
	3/30/2017	5'	< 290	< 3.2	< 2.4	< 2.1	< 6.4	< 82	Acetone = 36 All Other VOCs = ND	.15.8	19,000	48.93
SV-5	5/12/2016		< 280	< 5.8	< 4,4	< 3.9	<12	< 150	All Other VOCs = ND	22.6	< 6.5	< 0.01
(by EPA Method TO-15)	3/30/2017	10.	< 290	< 3.1	< 2.4	< 2,1	< 6.3	< 81	All Other VOCs = ND	34.5	< 3.5	< .0.00
	5/12/2016	10	< 280	< 5.9	< 4.5	< 3.9	< 12	< 150	Acetone = 18 ⁴ All Other VOCs = ND	53.6	< 6.6	< 0.01
SV-5	5/12/2016	5'	380 *	<16	18	≈16	57	< 16	All Other VOCs = ND	89,8	23	0.01
(by EPA Method TO-17)	3/12/2016	10'	370 *	< 16	28	< 16	31	< 16	All Other VOCs = ND	25.8	22	0,03
Laborate	ory's Practical Quantitation Limit	(PDL)	200	i	1	5	5	.20	Varios	-	-	-
	Levels ^(II) Residented ATTEN relat ATTENUATION FACTOR		50.000° 100.000°	46 420	360,000 1,300,000	560 4,900	s2,000 440,000	#1 360	1,2-0bromoethane: 2.3 / 20 PCE: 246 / 2,100 Styrene: 15,000,007 / 1,400,000 Acetone: 15,000,007 / 11,000,000" All Others: vary or Not Established			
	EPA Regional Screening Level Commercial 03 ATTENUATION FACTOR)		Not Established	17 53	175.531 733,333	31 161	3.333 14,667	23 32	1,2-Dibromoethane: 0.101 / 0.66 PCI: 457 / 1.567 Styree: 5.511 5 / 146,667 Propylene: 103,231 / 433,118 Acetone: 1,000 set / 4,660,167 All Others: vary of Not Stabilized			
"N	SC-Modified Soli Gas Leve lear Source" Threshold Limit IIIII ATTENUATION FACTOR IIIII ATTENUATION FACTOR	0.05/	Not Established	49 420	355,000 1,300,000	550 4,900	50,000 440,000	6Z 360	1,2-0ibromoethane; 1,35 / 20 PCE; 240 / 2,100 Styrene; 173,000 / 3,800,001 Propylene; 1,350,000 / 13,000,000 Actione; 16,000,000 / 140,000,000 All Others: Vary or Not Equilibilitied			
	" <u>Subslab</u> " Threshold Limits Revidental / Convinential OS ATTENUATION FACTOR)		Not Established	1.9	6,200 26,000	22. 9 9	2,090 8,800	2. 2	1.2-Dibromoethane: 0.0% / 0.4 PCE: 9.6 / 42 Styrene: 11.800 / 78.000 Propylene: 82.000 / 260,000 Acetone: 40.000 / 2,860,000 Al (Other: vary or Note Stabilised			
Risk-b	Site-Specific based Soil Gas Screening Leve	els ^{ie)}	850,000 2,000,000	3.100 7,300	960.000 2,300,000	19,600 97,000	120,000 780,000	3,400 8,800	Styrene: 3, 100,000 / 8,289,000 Acetone: 10,000,000 / 180,000,000			

Notes

1 = Environmental Screening Levels (ESLs): from User's Guide: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, set by the San Francisco Bay Regional Water Quality Control Board (Interim Final, Feb 2016)

chttp://www.weterbourds.ct.gov/sanfranciscobay/water_bsuss/program/ESI/ESIS_20Workbook_ESIS_PDF_Rev2.pdf >. The ESIs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted. The ESIs used in this table were obtained from the above referenced document, "Tier 1 ESIs", based on shallow soils (-Gm), groundwater is a current or potential source of drinking water.

All Others: Not Establi

2 = US EPA Region 9's Regional Screening Levels (RSLs): From US EPA Regional Screening Levels for Indoor Air (http://www.epa.gov/region9/uperfund/urg/, revised November 2015).

The Indoor Air RSLs are divided by the US EPA's Recommended Vapor Attenuation Factor (0.03) (from the US EPA's Recommended Vapor Attenuation Factor for Risk Based Screening of sub-slob soil gas (Table 6-1 in Final Guidance for Assessing and Mitigating the Vapor Intrusion Pathway From Subsurface Sources to Indoor Air, June 2015)) to calculate the Risk Level concentration appropriate for the specific sample collected (i.e., Sub-slob soil gas, "Rear-source" exterior soil gas, Crawl space air, etc.).

3 = CA DTSC Modified Air Screening Levels: From the California Department of Toxic Substances Control [DTSC]; Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 3, Jan 2016 < https://www.dtscca.gov/AssessingRisk/upload/HHRA-Note-3-2016-01.pdf > The Modified Air Screening Levels are divided by the DTSC's Recommended Vapor Attenuation Factor (0.002 residential / 0.001 commercial) to calculate the Risk Level concentration appropriate for the specific sample collected. Where Modified Air Screening Levels are not available, US EPA RSLs (see Note 2 above) are used with the DTSC attenuation Factor (0.002 residential / 0.001 commercial) to calculate the Risk Level concentration appropriate for the specific sample collected. Where Modified Air Screening Levels are not available, US EPA RSLs (see Note 2 above) are used with the DTSC attenuation Factor.

4 = Site-Specific Risk-Based Soil Gas Screening Levels (adjacent MGP site): From Table 8. Risk-based Soil Gas Screening Levels taken from the "Soil Gas, and Indoor Air Screening Levels" section of the Watsonville-1 Former MGP Site Report (September 29, 2009) prepared by Iris Environmental.

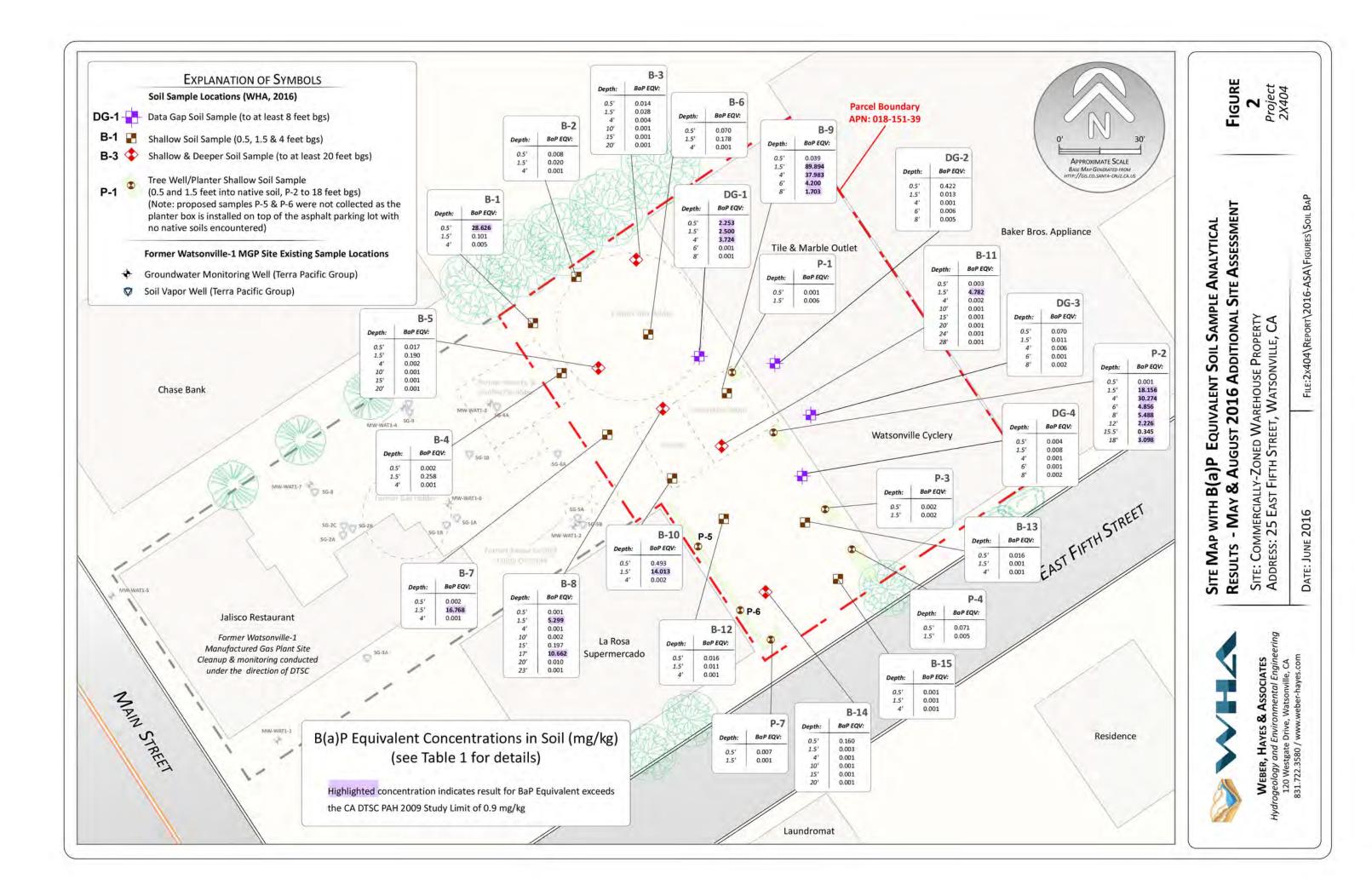
* = Soil vapor monitoring points SV/1 (10 feet), SV-2 (10 feet), SV-3 (10 feet), SV-3 (10 feet), SV-3 (10 feet), SV-3 (10 feet), and SV-4 (10 feet) and SV-4 (10 feet) and SV-4 (10 feet) and so il vapor samples were obtained. An effort was made to evacuate all water from the sample tubing and well annulus. Small volumes of water (i.e., "100 mil) were removed at each location until no more water was observed.

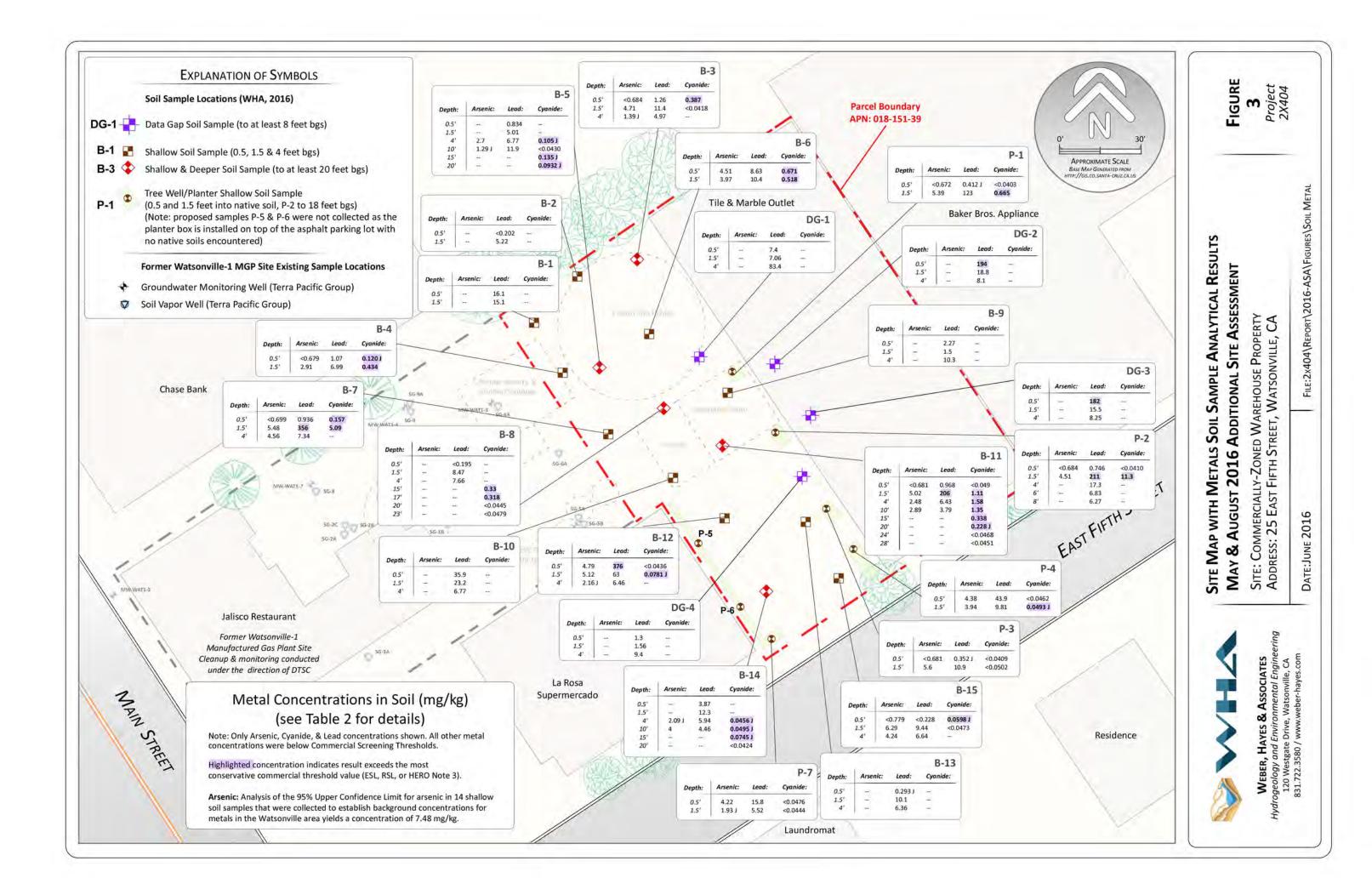
a = ESL threshold is due to Odor. (See note 2 for more information)

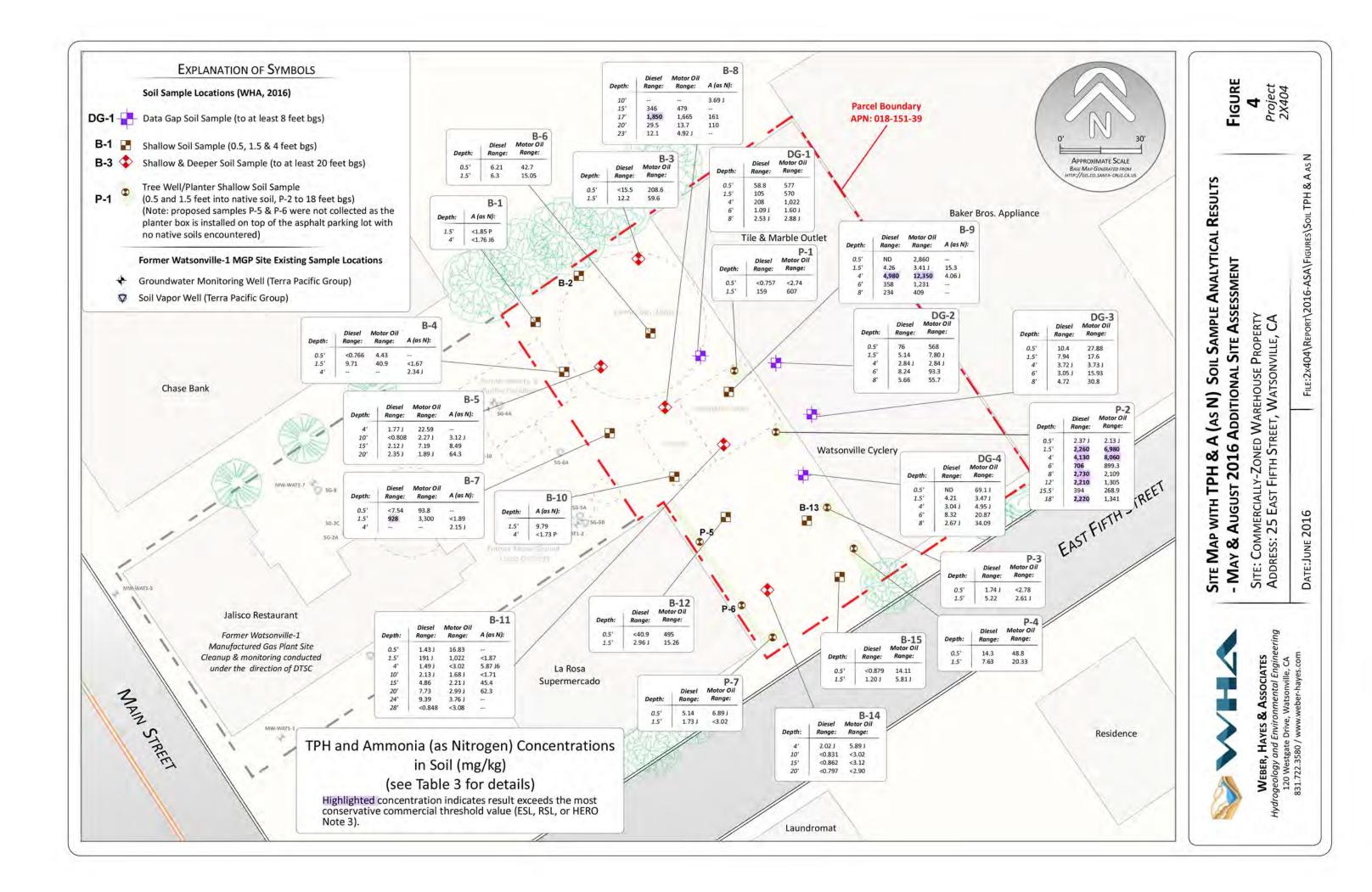
r = No DTSC CA Note 3 screening level established for this compound, used RSL when calculating Subslab

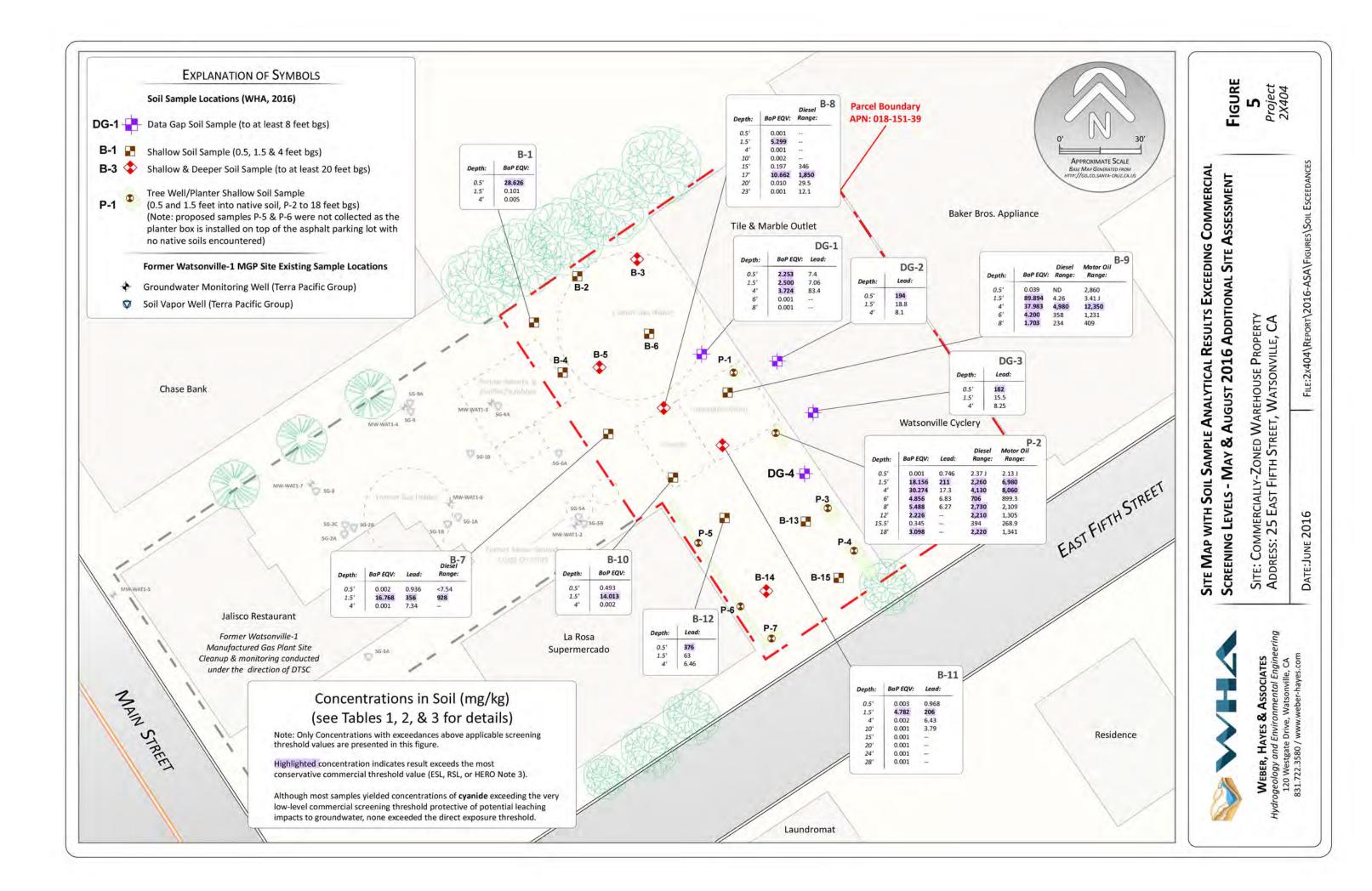
PCE = Tetrachioroethene --- = Sample was not analyzed for this constituent

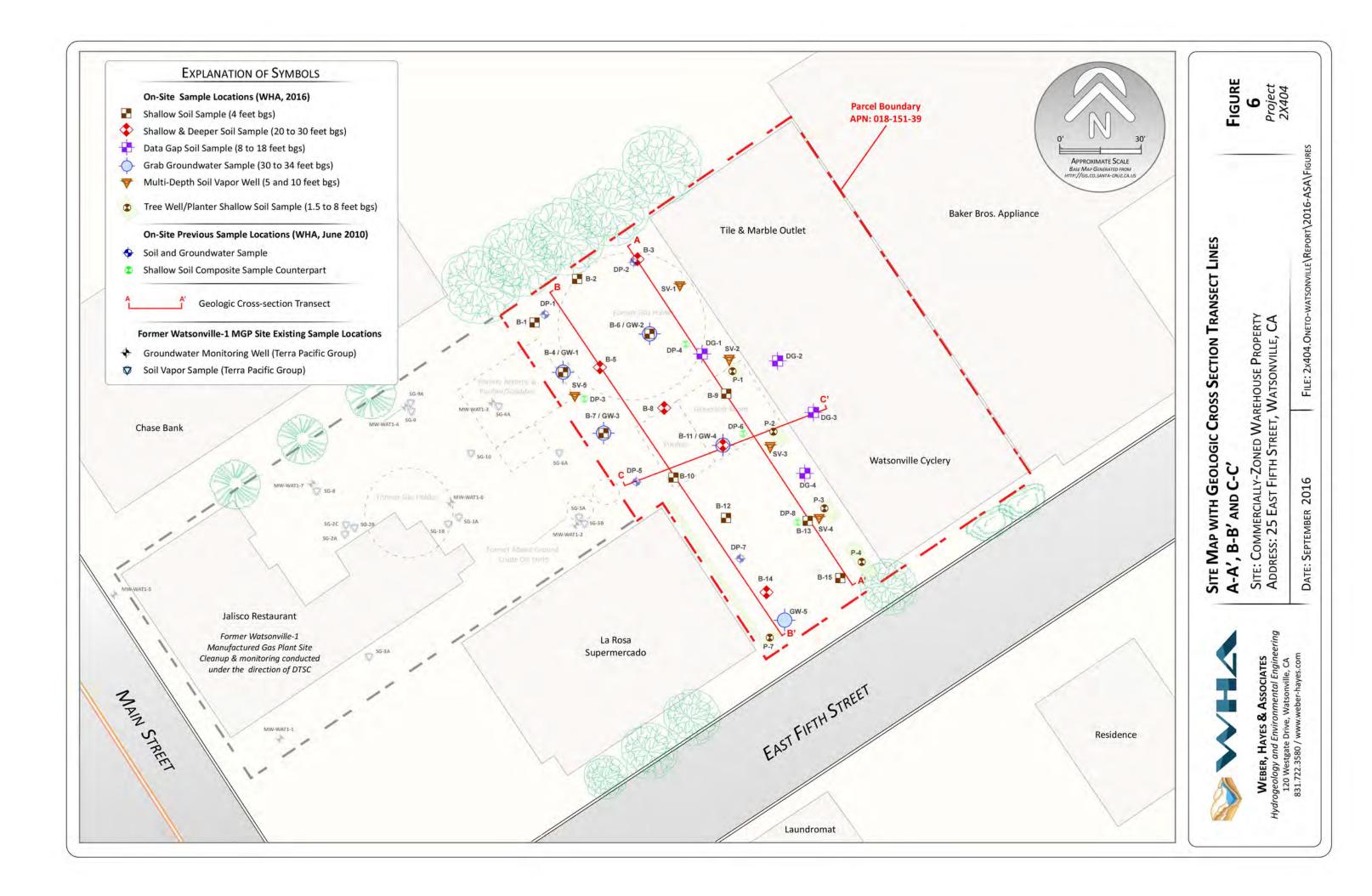
< X = Constituent not detected above laboratory's Method Detection Limit (MDL), X.

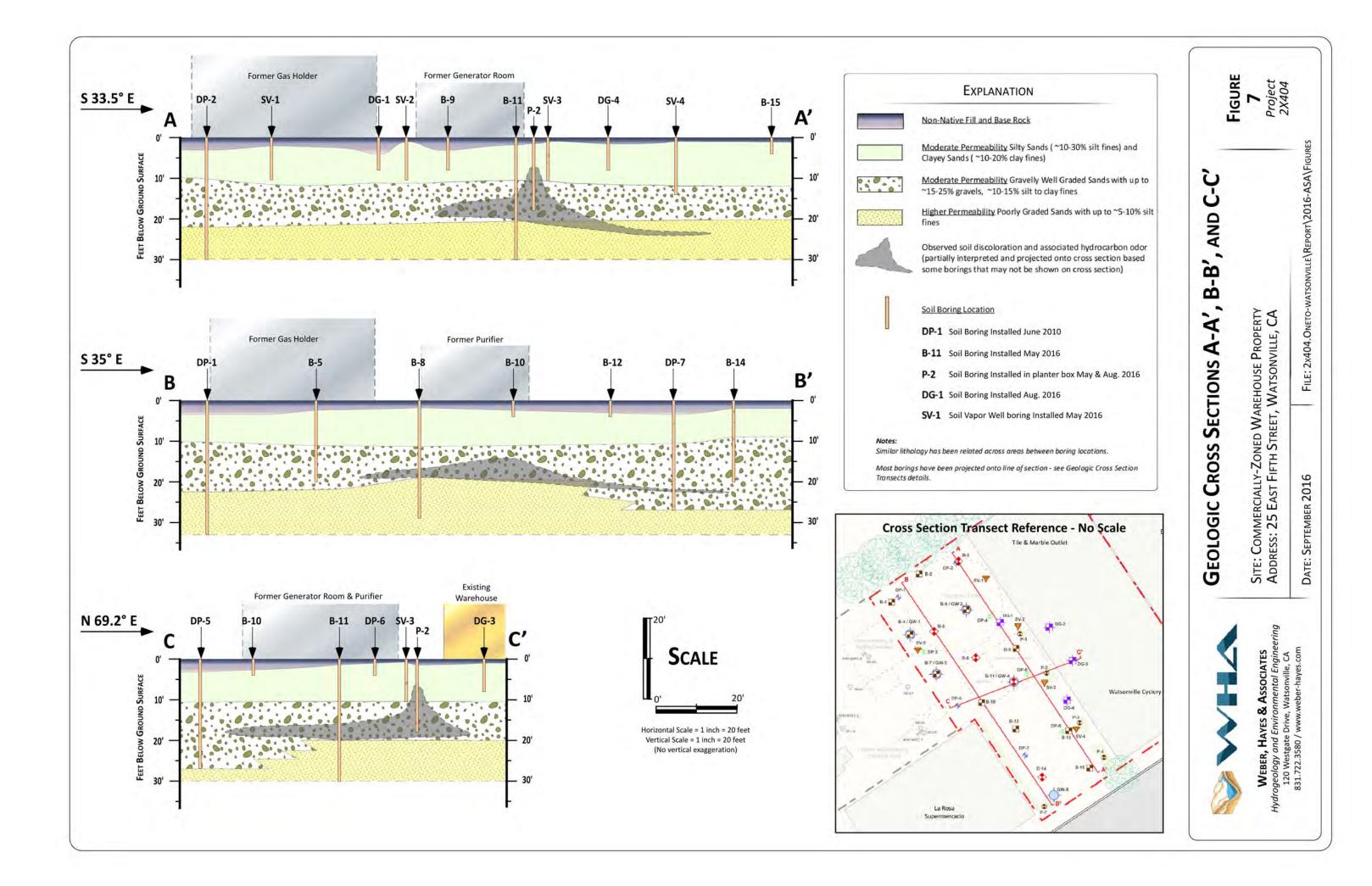

@S Mary @15 A.by

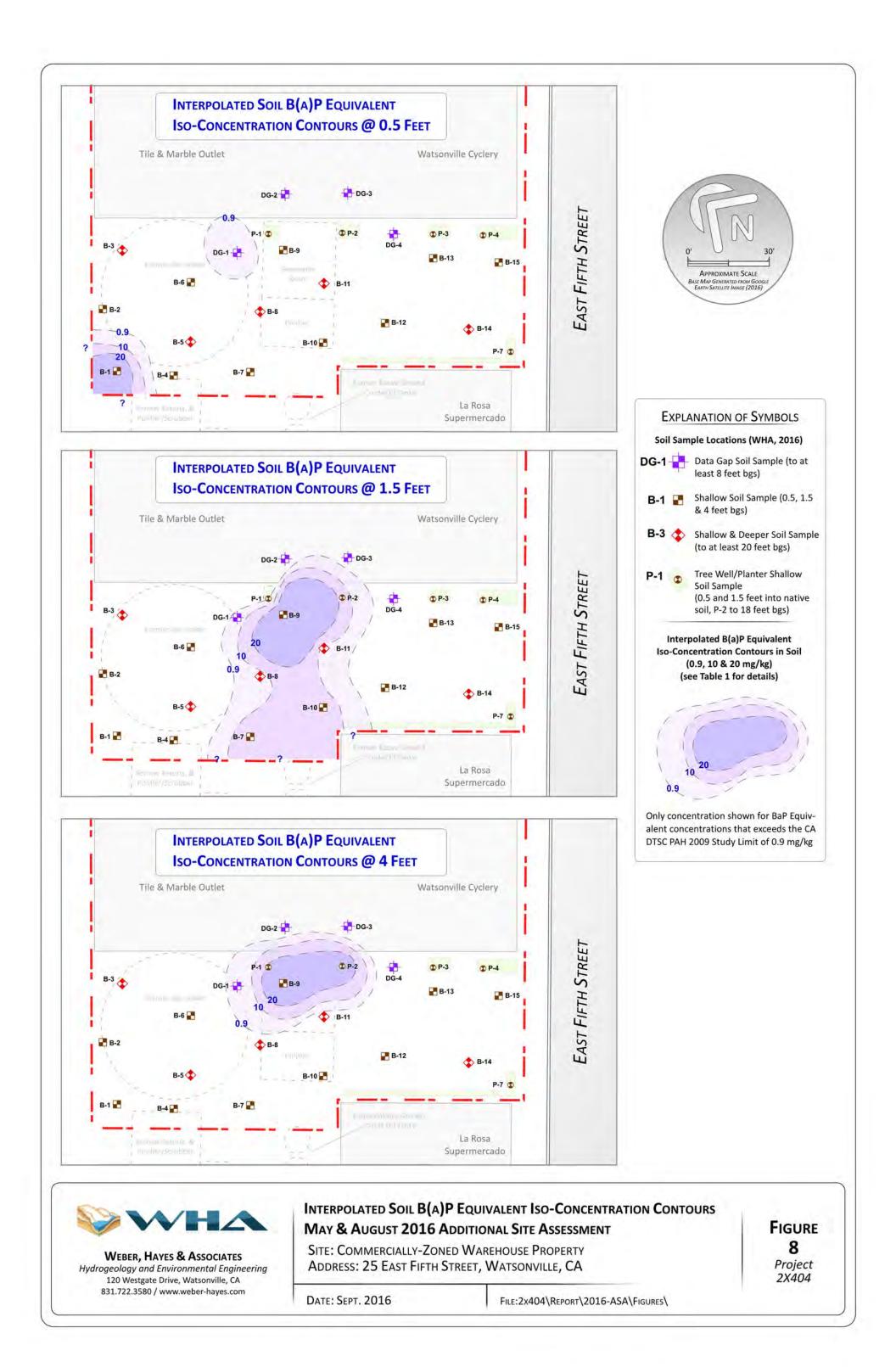

BOLD = Analytical result exceeds Commercial US EPA Regional Screening Level threshold.

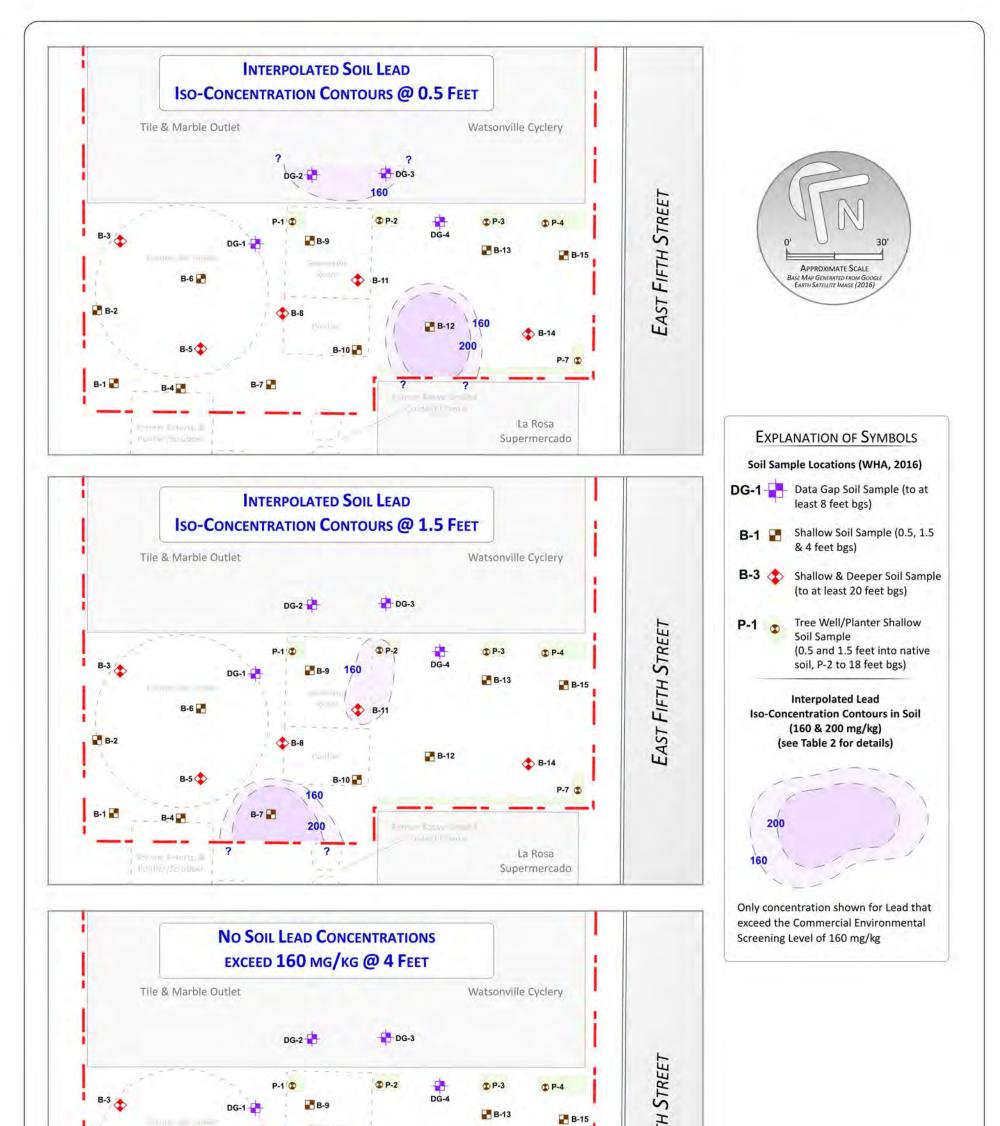

BOLD = Compound detected.

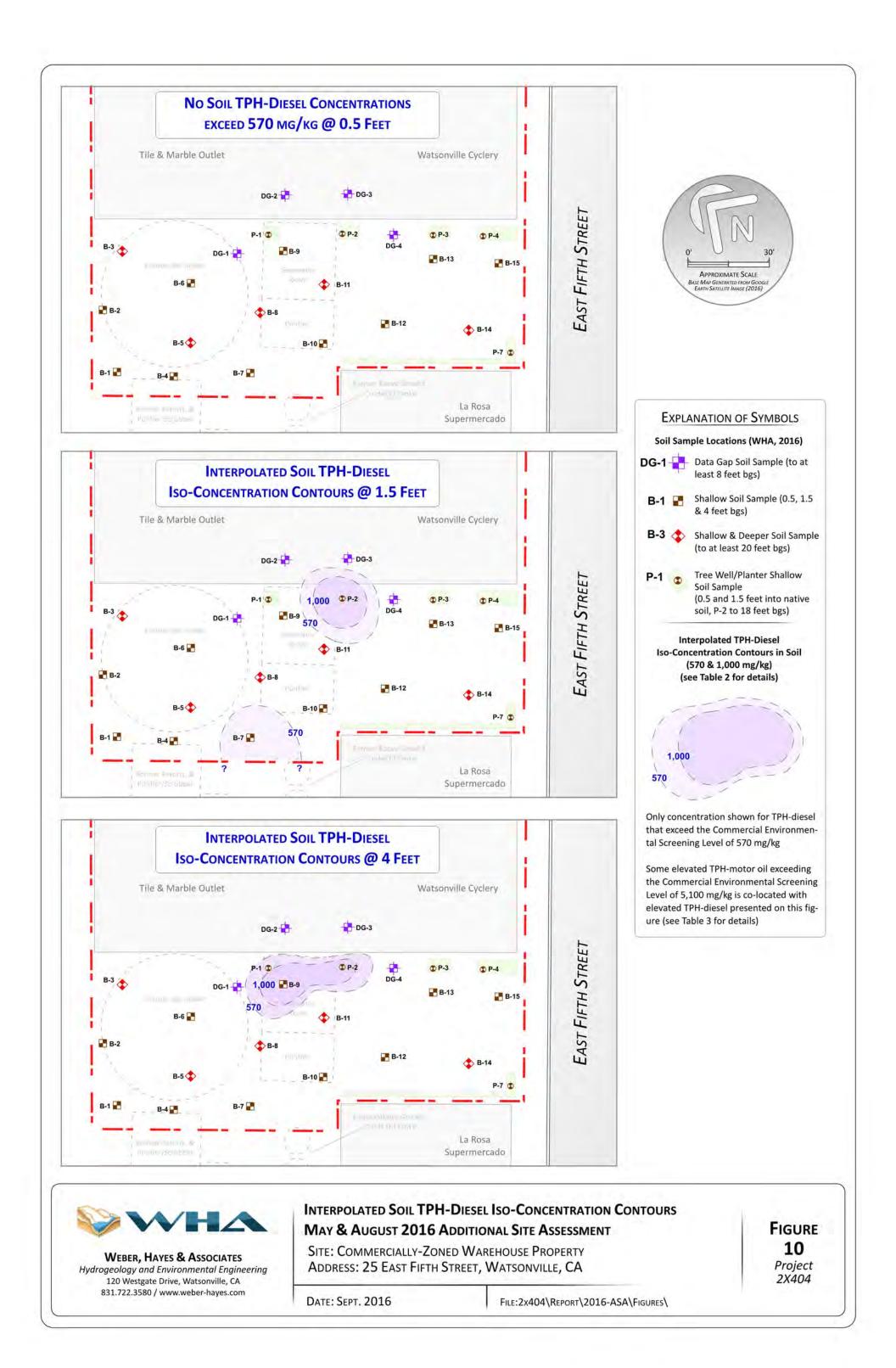

1 a Laboratory note: Estimated value

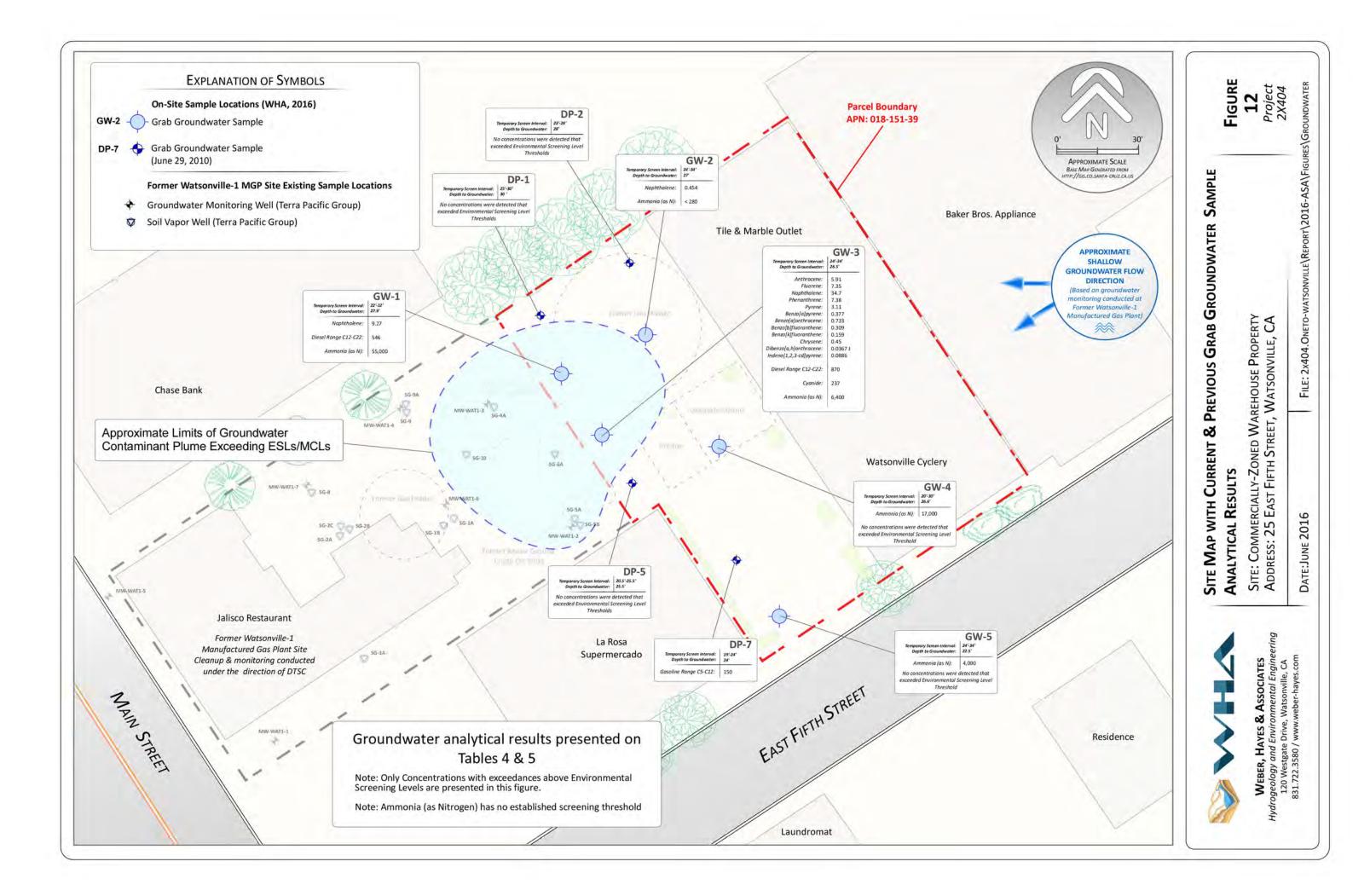

* Laboratory notes, Result reported as gasoline but sample chromatogram does not match reference standard pattern. TPH value due to presence of heavy hydrocarbons (best match Stoddard Solvent pattern) within range of C5-C12 quantified as Gasoline.

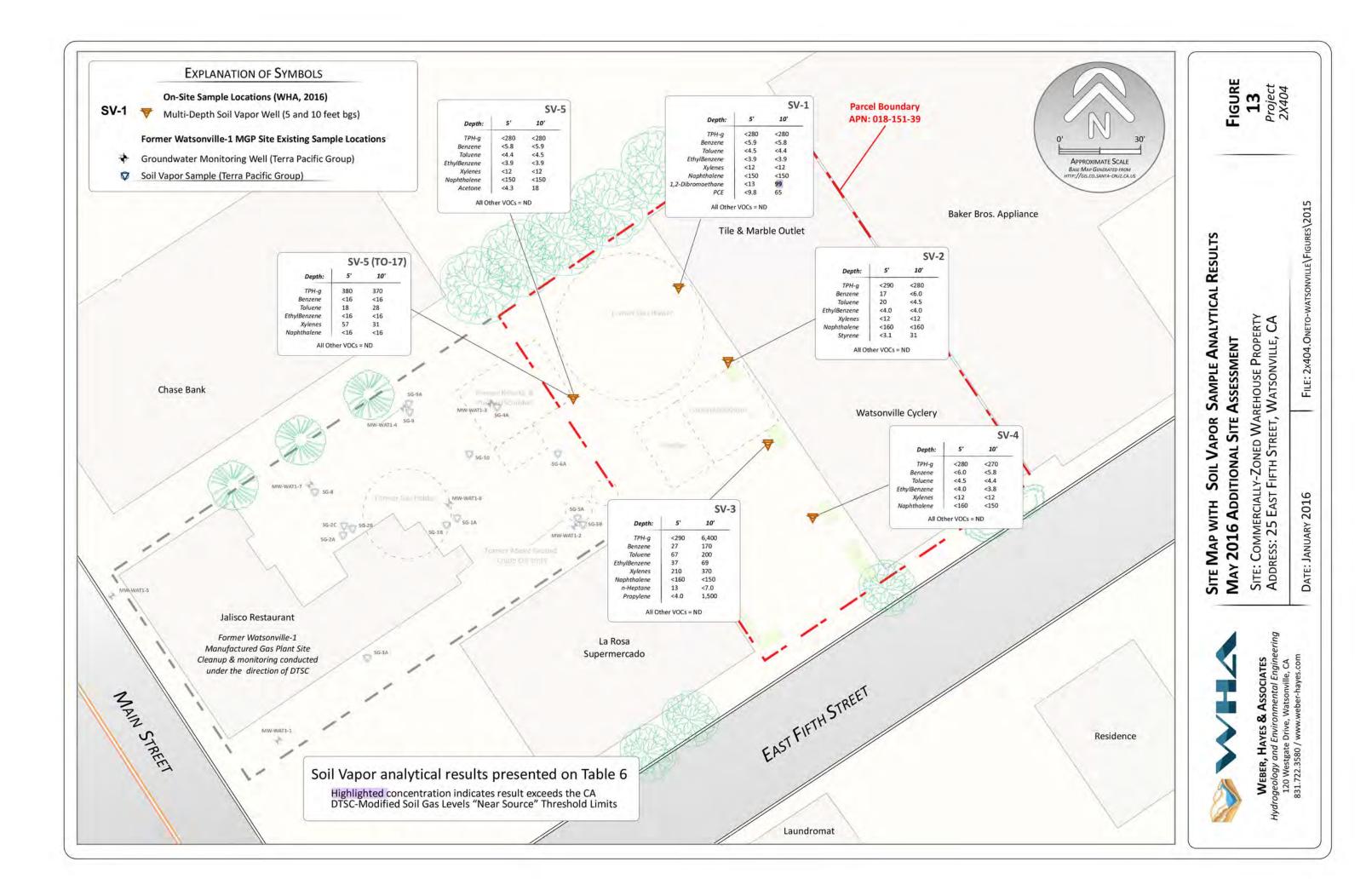












Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

APPENDIX B

REVIEW OF FORMER WATSONVILLE-1 MANUFACTURED GAS PLANT CHARACTERIZATION & CORRECTIVE ACTIONS

INCLUDES: SELECT TABLES & FIGURES

(618 Main Street, Watsonville - Adjacent Jalisco Restaurant Property)

WEBER, HAYES & ASSOCIATES

REVIEW OF FORMER WATSONVILLE-1 MANUFACTURED GAS PLANT CHARACTERIZATION & CORRECTIVE ACTIONS

Research of previous environmental investigations at the adjacent commercial restaurant parcel to the west (618 Main Street, Jalisco Restaurant) has documented evidence of soil and groundwater contamination that is associated with the same manufactured gas plant that operated on the subject Site. The adjacent property characterization and cleanup activities have been ongoing since approximately 1986 and investigation is currently under the direction of the California Department of Toxic Substances Control (DTSC). Additional details, including electronic copies of previous reports can be obtained at the State GeoTracker database website¹⁴.

Adjacent property characterization activities have included extensive sampling of soil, groundwater and soil vapor media that has provided sufficient definition of subsurface chemical impacts to guide conservative, regulatory approved corrective actions (i.e., soil removal, institutional controls and ongoing natural attenuation monitoring) that are protective of the commercial land use scenario. A land use covenant has been recorded for this property that is restrictive of residential land use.

The following provides a brief synopsis of soil, groundwater and soil vapor sample results for this adjacent property. Select Tables and Figures from previous investigations are also included in Appendix B for reference.

SOIL

Numerous soil samples have been collected throughout the property, with the vast majority collected in 1991, 2001 and 2004. Site *Chemicals of Concern (COCs)* in soil include: polynuclear aromatic hydrocarbons (PAHs), and to a much lesser extent Naphthalene, Total Petroleum Hydrocarbons (TPH), and Cyanide. The following worst case concentrations for each COC in soil have been historically detected at this site:

Worst Case concentration of COCs in Soil Historically Detected at 618 Main Street, Watsonville

Chemical of Concern	Depth Interval	Concentration (mg/kg)	Sample Location	Sample Depth (feet, bgs)
PAHs expressed as	< 10 feet	17.161	GP1	0.5
benzo(a)pyrene equivalent	> 10 feet	21.035	GP1	15

¹⁴ http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=SLT3S1091318

Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

Chemical of Concern	Depth Interval	Concentration (mg/kg)	Sample Location	Sample Depth (feet, bgs)
	< 10 feet	0.25	HA10	1.5
Naphthalene	> 10 feet	320	GP4	15
	< 10 feet	8.1	DSS-1-WAT1-2	surface
TPH-gasoline	> 10 feet	5,300*	GP1	15
and the second	< 10 feet	2,100		2.5
TPH-diesel	> 10 feet	14,000	GP1	15
St 16	< 10 feet	4,200		2.5
TPH-motor oil	> 10 feet	9,500	GP1	15
10.00	< 10 feet	14.3		5
Cyanide	> 10 feet	13.1	- MW-WAT1-2	13

Worst Case concentration of COCs in Soil Historically Detected at 618 Main Street, Watsonville

* = Concentrations of toluene, ethylbenzene, and xylenes detected at 19, 28 and 400 mg/kg, respectively

The worst case soil concentrations were detected at the rear (eastern) portion of the property, within the footprint of historic MGP infrastructure.

GROUNDWATER

Between 1991 and 2009 a total of seven (7) groundwater monitoring wells have been installed throughout the property (MW-WAT1-1 through -7; see Figures in Appendix B). Groundwater levels are documented to fluctuate between approximately 16 and 32 feet bgs and documented to consistently flow in a northwesterly to southwesterly direction (generally westerly with some seasonal variation). Groundwater is sampled semi-annually (October and April) from all wells and analyzed for the following chemicals:

- TPH-diesel and TPH-motor oil by EPA Method 8015B
- TPH-gas and BTEX/MTBE by EPA Method 8260B
- PAHs by EPA Method 8270SIM
- Arsenic by EPA Method 6010B
- Total cyanide by Standard Method 4500, and
- Ammonia as nitrogen by Standard Method 4500

Overall, impacted groundwater is generally limited to the eastern part of the property in the vicinity of wells MW-WAT1-3 and MW-WAT1-4 with the highest concentrations of COCs observed in groundwater at upgradient (eastern) well MW-WAT1-3. Decreasing concentrations of TPH-diesel, TPH-gas and BTEX have been observed since the April 2009. These compounds continue to be trace to non-detectable at the downgradient wells (i.e., MW-WAT1-5 and MW-WAT1-7) indicating that the groundwater contaminant plume is stable.

The following provides a brief synopsis of groundwater sample analytical results:

Petroleum Hydrocarbons

Low levels of TPH-diesel have been consistently detected in the groundwater samples collected from well MW-WAT1-3 and MW-WAT1-4, at concentrations periodically exceeding the Central Coast Water Quality Objective of 1,000 μ g/L. Only trace to non-detectable concentrations of TPH-gas and TPH-motor oil are detected in the monitoring well network.

BTEX

BTEX compounds are currently detected in well MW-WAT1-3 at concentrations of 3.2 μ g/L, 1.8 μ g/L, 17 μ g/L and 17 μ g/L, respectively (April 2015). Benzene was detected slightly above the Maximum Contaminant Levels (MCL) of 1.0 μ g/L. The BTEX detections in groundwater samples from well MW-WAT1-3 are consistent with historical ranges of concentrations for this well and are relatively low-level. These compounds are not detected in any of the other site wells, with the exception of a few sporadic low-level concentrations detected in wells MW-WAT1-2 and MW-WAT1-4.

PAHs

Relatively low-level concentrations of PAHs, including naphthalene, are detected in monitoring wells MW-WAT1-3 and MW-WAT1-4. All other wells in the monitoring network remain free of PAHs.

Arsenic & Cyanide

Low-levels of arsenic have been historically detected in well MW-WAT1-3 generally below the MCL of 10 μ g/L and has remained free of arsenic since 2011. All other wells in the monitoring network remain free of arsenic.

Total cyanide has been historically detected in well MW-WAT1-2 at concentrations above the MCL of 150 μ g/L. Low-level concentrations of total cyanide, below the MCL, have been periodically detected in all other wells in the monitoring network.

Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

SOIL GAS

In October 2009, nine (9) dual-depth permanent soil gas probes were installed throughout the property (SG-1 through -6 and -8 through -10; see Figure 2 and Appendix A). Additional soil gas probes were installed in May 2011 to provide additional sampling points adjacent to probe locations where samples could not be collected due to low flow conditions. Soil gas sample depths at each location are set at 5 feet bgs and either between 9 and 10 feet bgs or 14.5 feet bgs.

Soil gas samples from each probe location are collected and analyzed on a semi-annual basis for TPH-gas and VOCs (including naphthalene) by EPA Method TO-15. In general, the highest TPH-gas and VOC concentrations detected in soil gas samples are encountered the eastern portion of the property's parking lot (at probe locations SG-4A and SG-6A). These two probes are situated where elevated soil impacts were encountered during previous investigations. In the western portion of the property soil gas VOCs, if detected, are at concentrations significantly lower than those reported at locations SG-4A and SG-6A.

Risk-Based Soil Gas Screening Levels

Results of soil gas sampling and analysis are evaluated with respect to site-specific risk based screening levels (RBSLs) that were developed for the site to be protective of restaurant building occupants (commercial risk scenario)¹⁵. The site-specific screening level human health risk evaluation was based on transport modeling of VOCs from soil gas to indoor air using the USEPA-recommended Johnson and Ettinger Model for soil gas and using site-specific inputs (i.e., multiple chemicals, soil layers and site-specific building parameters such as having a basement and slab-on-grade construction). The screening levels were calculated using conservative assumptions and are based on a commercial / industrial exposure scenario with a target risk level of 10⁻⁵ and a hazard index of 1.0. From the attenuation factors predicted using the Johnson and Ettinger Model and from risk-based target indoor air concentrations, site-specific risk-based screening levels (RBSLs) for chemicals of concern in soil gas were calculated for both shallow (5 feet bgs) and deeper (15-feet bgs) impacts. A tabular summary of the soil gas RBSLs is included in this Appendix for reference.

A Contingency Plan for Soil Gas Sampling¹⁶ was developed for the property to present steps to be taken in the unlikely event that soil gas concentrations exceed the site-specific RBSLs. If the cumulative potential cancer risk is greater than 10⁻⁵ or the hazard index is greater than 1.0, then a sub-slab sampling plan will be implemented, followed by potential indoor air sampling and ultimately mitigation if necessary (i.e., soil vapor extraction – see contingency below). **Continued evaluation of semi-annual sampling results**

¹⁵ Iris Environmental: Draft Screening Levels for Chemicals in Soil Gas, Sub-Slab Soil Gas, and Indoor Air, Watsonville-1 Former Manufactured Gas Plant, dated September 29, 2009

¹⁶ Terra Pacific Group: Contingency Plan for Soil Gas Sampling, Watsonville-1 Former Manufactured Gas Plant, dated September 30, 2009

confirms that potential vapor intrusion impacts to the existing commercial building are below levels of concern.

In 2011, three (3) vapor extraction wells (VW-1 through VW-3) were installed in the parking lot at the property and a vapor extraction (VE) pilot study was conducted to support the construction of a contingency vapor extraction system (VES). The VE pilot study was successfully completed and provided the necessary data to support the construction of the contingency VES. Results of the pilot test confirmed that the installed vapor wells (i.e., VW-1 through VW-3) were spaced adequately to meet the objectives of the proposed remedy contingency¹⁷.

OVERVIEW OF REMOVAL ACTION ACTIVITIES/CORRECTIVE ACTIONS

The removal action goal (RAG) developed for the property and approved by DTSC was to minimize potential future exposure of humans (property workers and visitors) to the COCs that may otherwise be available for ingestion, inhalation, or dermal contact¹⁸.

Soil Corrective Actions

The selected remedial approach for soll consisted of containment and institutional controls along with focused excavation of soil. This approach included the removal of near-surface soil within landscape planter areas that contain elevated PAH concentrations and backfilling with clean import soil. The approach also included the installation of new pavement and the surface water drainage system. The new concrete pavement and clean soil backfill within the planters collectively constitute a cap to contain or conceal the underlying impacted soil.

Specifically, these activities included the removal of impacted soil to a depth of 2 feet in various planters, as well as asphalt and soil to a depth of 1.5 feet beneath the entire parking lot and driveway area. Approximately 686 tons of non-hazardous soil was removed and properly disposed of at an off-site facility. Following the removal of impacted soils, a total of eighteen (18) confirmation soil samples were collected from the base of the excavated areas and analyzed for PAHs to document soil conditions below the new fill material. Thereafter, the parking lot was restored with new paving and planters were backfilled with clean imported soil and landscaped. A Figure showing these corrective actions and residual soil impacts that were capped in-place is included in this Appendix for reference.

As there are residual COCs beneath the cap (predominantly PAHs), a Land Use Covenant (LUC; i.e., deed restriction) was required to remain in place for the property that will be used to maintain the integrity of

¹⁷ Terra Pacific Group: Vapor Extraction Pilot Study Results, Watsonville-1 Former Manufactured Gas Plant, dated December 21, 2011

¹⁸ Terra Pacific Group: Final Removal Action Completion Report, Watsonville-1 Former Manufactured Gas Plant, dated October 27, 2011

cover features and enforce land use restrictions (i.e., commercial land use only) at the property due to a potential elevated health risk associated with residual concentrations of COCs.

Groundwater & Soil Gas Corrective Actions

As described in the above sections, a post-remediation soil gas and groundwater natural attenuation monitoring program was implemented (i.e., semi-annual sampling) to evaluate attenuation of soil gas and groundwater associated with residual COCs that remain at depth beneath the property.

Soil vapor extraction and institutional controls have been retained as a contingency alternative for soil gas should soil gas monitoring show that soil gas concentrations are increasing and exceeding site-specific risk based screening levels (RBSLs). As noted above, continued evaluation of semi-annual sampling results confirms that potential vapor intrusion impacts to the existing commercial building are below levels of concern. Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

Tables & Figure - Groundwater & Soil Gas Results

Source: April 2015 Groundwater and Soil Gas Monitoring Report, Terra Pacific Group, dated June 20, 2015.

Table 3 Summary of VOCs, TPH, Metals and Other Constituents in Groundwater Former Watsonville-1 MGP Site Watsonville, California

	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Volat	tile Organic Comp	ounds		Total P	etroleum Hydro	carbons	Me	etals	1	Other Co	onstituents	-
Well ID	Date Sampled Units	Benzene µg/L	Toluene µg/L	Ethylbenzene ug/L	Total Xylenes*	MTBE µg/L	TPHg µg/L	TPHd µg/L	TPHmo µg/L	Arsenic **	Hexavalent Chromium µg/L	Ammonia (as Nitrogen) µg/L	Total Cyanide µg/L	Phenolics	Total Dissolved Solids mg/L
MW-WAT1-1	6/24/1991	<1	<1	<1	1.4		<50	<50	<500				<10	<50	
Min-man ter	10/17/1997	<0.5	<0.5	<0.5	<0.5	-	<50	<50	<500	-			<10	<5	
	4/16/1998	<0.5	<0.5	<0.5	<0.5		<50	<50	<500			in the second	40	<5	340
	6/19/1998	<0.5	<0.5	<0.5	<0.5	-	<50	<50	<500		-		<10	<50	300
	10/16/1998	<0.5	<0.5	<0.5	<0.5	<5	<50	57	<500	-	-		<10	<5	
	4/15/1999	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	-	-	- 1	<10	<5	
	10/26/1999	<0.5	<0.5	<0.5	<0.5	7.6	<50	<50	<300		-		<10	<50	-
	4/13/2000	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	in the second	-		<5	110	-
	10/5/2000	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	-	-	-	<10	<100	
	3/14/2001	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	3/27/2001	<0.5	<0.5	<0.5	<0.5	<5	140	<50	<500	-	-	-	<5	<100	
	10/26/2001	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	1.				· · · · · · ·	1
	4/23/2002	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	-	<10	130	<10	· · · · · ·	· · · · ·
	10/29/2002	< 0.5	<0.5	<0.5	<1.5 UJ		<50 UJ	<500	<500	<5		<110	<24		
	4/28/2003	<0.5	<0.5	<0.5	<1.5 UJ	<5	<50	<480	<480	<5		2.030	<21		
	11/20/2003	< 0.30	< 0.30	<0.30	<0.30	<5.0	<50	<50	<250	<15		<100	<50	-	-
	5/12/2004	<0.30	< 0.30	<0.30	<0.60	<5.0	<50	<50	<250	<15		<100	<50		1 m m
	11/9/2004	0.24 J	< 0.30	< 0.30	< 0.30	<5.0	<50	<50	<250	<10		<100	<50	-	-
	5/12/2005	< 0.30	0.53	< 0.30	<0.30	<5.0	<50	<50	<250	<10		<100	<50	1	1. Inc
	8/2/2006	<0,30	< 0.30	<0.30	<0.60	<5.0	<50	<50	<250	<10.0		<100	<50		-
	12/19/2006	<0.50	<0.50	<0.50	<1.0	<5.0	<50	<50	<250	<10.0		<100	<50	1	
	6/26/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<500	<5.0		<200	<10	-	
	11/15/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<500	<5.0		<200	<10		-
	4/22/2008	< 0.50	<0.50	< 0.50	<1.0	<0.50	<50	<50	<500	<5.0	· · · · · · · · · · · · · · · · · · ·	<200	<10	1	
	11/6/2008	<0.50	<0.50	<0.50	<1.0	<0.50	<50	66 UN	<500	9.2		<200	<10		
	4/8/2009	<0.50	< 0.50	< 0.50	<1.0	<0.50	<50	<50	<300	<9.5		<200	<10		
	10/12/2009	<0.50	<0.50	<0.50	<1,0	<0.50	<50	<52	<310	<10		<200	<10		-
	4/13/2010	<0.50	<0.50	<0,50	<1.0	<0.50	<50	<52	<310	<10		<200	<10		
	10/13/2010	<0,50	<0.50	<0.50	<1.0	<0.50	<50	48 J, J+	100 J	<10		88 J	<10		
	5/10/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<99	<10		<200	<10		-
	10/4/2011	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<52	130 UN	<10		<200	<10	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	10/22/2012	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<48	<95	<10	-	<200	<10	-	-
	4/23/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<52	<100	<10		<200	<10		-
	10/22/2013	<0.50	<0.50	<0.50	<1,0	<0.50	<50	<53	<110	<10		<200	<10		
	4/16/2014	<0.50	<0.50	<0.50	<1,0	<0.50	<50	<52	<100	<10		<200	<10		-
	10/6/2014	NC	NC	NC	NG	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/21/2015	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<52	<100	<10	-	<200	<10		-
MW-WAT1-2	6/24/1991	2.3	2,2	2.1	12		360	60	<500	-	-		40	<50	-
	10/17/1997	<0.5	<0.5	<0,5	<0.5	***	<50	<62	<620		. +	1988	130	<5	-
	4/16/1998	<0.5	<0.5	<0.5	<0.5	-	11	120	<500	1.000	-	1	210	7	390
	6/19/1998	<0.5	<0.5	<0.5	<0.5	-	<50	<50	<500	-		-	87	<50	400
	10/16/1998	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Watsonville	, California
-------------	--------------

			Volat	tile Organic Comp	ounds		Total P	etroleum Hydro	carbons	Me	etals	1	Other Co	onstituents	í
Well ID	Date Sampled Units	Benzene µg/L	Toluene µg/L	Ethylbenzene µg/L	Total Xylenes*	MTBE µg/L	TPHg µg/L	TPHd µg/L	TPHmo µg/L	Arsenic **	Hexavalent Chromium µg/L	Ammonia (as Nitrogen) µg/L	Total Cyanide µg/L	Phenolics µg/L	Total Dissolved Solids mg/L
MW-WAT1-2	4/15/1999	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	Pg/-			74.9	<50	
and the second sec	4/15/1999	NC	NC	NC	NC NC	NC	NC NC	<50 NC	NC	NC	NC	NC	74.9 NC	NC NC	NC
(continued)	4/13/2000	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	- NG	NC	NC -	<5	100	INC.
	10/5/2000	NC NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	3/14/2001	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NG	NC
	3/27/2001	<0.5	<0.5	<0.5	<0.5	<5	<50	56	<500	- NG	- NC	IVC	<5	<100	NO.
	10/26/2001	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/23/2002	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC.	NC
	10/29/2002	NC	NC	NC	NG	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/28/2003	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	11/20/2003	<0.30	<0.30	<0.30	<0.30	<5.0	<50	140	<250	NG		<100	-	-	-
	5/12/2004	<0.30	<0.30	<0.30	<0.60	<5.0	<50	<50	<250	<15		<100	190		-
	11/9/2004	<0.30	0.27J	<0.30	0.45	<5.0	<50	<50	<250	NC	-	NC	<50	1 100	-
	5/12/2005	<0.30	0.57	<0.30	<0.30	<5.0	<50	110	<250	<10	-	1,700	100		-
	8/2/2006	<0.30	<0.30	<0.30	<0.60	<5.0	<50	<50	<250	<10.0	_	350	81		
	12/19/2006	<0.50	<0.50	<0.50	<1.0	<5.0	<50	NC	NC	NC		NC	NC		
	6/26/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	150	<500	<5.0	-	1,300	220		-
	11/15/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	NC	NC	NC	NC	NC	NC	NC	NC
	4/22/2008	<0.50	<0.50	<0.50	<1.0	<0.50	<50	160	<500	<5.0		1,900	220		-
	11/6/2008	<0.50	<0.50	<0.50	<1.0	<0.50	<50	200	<500	<5.0	-	<200	300		
	4/8/2009	<0.50	<0.50	< 0.50	<1.0	<0.50	<50	<50	<300	<9.5	-	<200	100		
	10/13/2009	<0.50	<0.50	<0.50	<1.0	<0.50	<50	NC	NC	NC		NC	NC	1.0.00	1.1.1.2
	4/13/2010	<0.50	<0.50	< 0.50	<1.0	<0.50	<50	<53	<320	<10	-	1,100	46	-	-
	10/13/2010	NC	NC	NC	NC	NC	NG	NC	NC	NC:	NC	NC	NC	NC	NC
	5/10/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	52	<100	<10	-	1,300	130		
	10/4/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	66	170 UN	<10		<200	120	1 2 1	1-1-1-
	10/22/2012	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	93	140	<10	-	<200	65	1.3-5-1	1. 1.
	4/23/2013	<0.50	< 0.50	<0.50	<1.0	<0.50	<50	<52	<100	<10		<200	96		-
	10/22/2013	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/16/2014	< 0.50	<0.50	< 0.50	<1.0	<0.50	<50	<52	<100	<10	-	<210	94		
	10/6/2014	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/21/2015	<0.50	<0.50	<0.50	<1.0	<0.50	<50	NC	NC	<10	NC	NC	66	NC	NC
MW-WAT1-3	6/24/1991	140	350	270	730		900	510	800				<10	350	1 <u></u>
	10/17/1997	8.8	49	8.7	100	· · · · · · · · · · · · · · · · · · ·	470	560	<570	-	-		140	11	
	4/16/1998	18	130	130	420	-	2,100	4,900	<500			-	30	61	610
	6/19/1998	7.6	81	47	190		1,500	2,000	670	-			24	69	500
	10/16/1998	1.2	6.9	2.4	12	<5	73	170	<500	-	<u> </u>		<10	<5	
	4/15/1999	25	310	120	740	<50	2,800	3,100	<500				18	110	1
	10/26/1999	2.3	24	9.3	39	4.3	300	150	<290	-	· · · ·		10	<50	
	4/13/2000	33	360	110	650	<25	2,800	6,500	<500				<5	350	1 <u>1</u> 21
	10/5/2000	< 0.5	5.2	1.2	6	<5	<50	160	<500	-		· · · · · ·	20	<100	-
	3/14/2001	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Watsonville,	California
--------------	------------

			Volat	ile Organic Comp	ounds		Total P	etroleum Hydro	carbons	Me	etals	1	Other Co	onstituents	
Well ID	Date Sampled Units	Benzene µg/L	Toluene µg/L	Ethylbenzene µg/L	Total Xylenes*	MTBE µg/L	TPHg µg/L	TPHd µg/L	TPHmo µg/L	Arsenic **	Hexavalent Chromium µg/L	Ammonia (as Nitrogen) µg/L	Total Cyanide µg/L	Phenolics µg/L	Total Dissolved Solids mg/L
MW-WAT1-3	3/27/2001	9.4	40	36	99	<25	900	1,500	<590			-	<5	<100	
(continued)	10/26/2001	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	-				<100	-
(contracted)	4/23/2002	1.8	4.3	7.3	15	<5	240	460	<500		<10	4,100	6	-	-
	10/29/2002	1.5	<0.5 UJ	<0.5 UJ	9.1		<50 UJ	<500 UJ	<500	8.3	-	2,860	<24		2
	4/28/2003	4.2	8.9	28.5	47	12	250	350 J	<480	6		3,490	<21		_
	11/20/2003	3.9	17	8.5	19.6	<10	110	160	<250	18.4	1 mar 1 m	2,500	<50	1944	1.2
	5/12/2004	3.3	7.3	16	27.2	<5.0	330	680	<250	<15		4,700	<50		
	11/9/2004	0.53	0.68	0.88	1.93	<5.0	<50	69	<250	<10		2.000	<50		-
	5/12/2005	8.8	38	78	190	<10	1.800	3,000	1.000	<10	-	6,700	<50		-
	8/2/2006	2.9	2.7	19	18.6	<5.0	520	1,200	610	<10.0	-	<100	<50	1	
	12/19/2006	0.55	1.2	1.7	3.4	<5.0	<50	220	<250	<10.0		4,600	<50		-
	6/26/2007	2.5	2.9	12	11	<0.50	290	500	<500	5.0	-	5,800	<10		-
	11/15/2007	0.70	2.4	2.1	4.7	<0.50	59	<50	<500	7.2		2,000	<10		-
	4/22/2008	8.6	23	49	45	<0.50	710	1,000	<500	5.1	-	7,300	<10		-
	11/6/2008	23	67	110	220	<0.50	1,500	1.300	< 500	6.7		5,600	<10	· · · · · · ·	-
	4/8/2009	41	290	270	750	<2.5	4,200	5,800	<300	<9.5		8,000	<10		-
	10/13/2009	<0.50	0.81	2.1	4.0	<0.50	<50	150	<310	<10	-	3,600	13		-
	4/13/2010	5.2	4.9	33	30.0	<0.50	320	1.000	<300	<10		3,300	11		-
	10/13/2010	0.36 J	1.4 B	1.7	5.2	<0.50	51	250 J+	220 J	7.3 J	1 1 1 1 1	4,500	14		-
	5/10/2011	0.79	1.1	3.1	3.4	< 0.50	75	980	<100	<10		4,500	17		
	10/4/2011	2.8	2.9	5.3	6.1	<0.50	210	940	180 UN	<10	-	8,000	29		1.00
	10/22/2012	6.7	8.2	40	31	< 0.50	460	900	<100	<10	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5,900	14	1.1	1
	4/23/2013	2.3	1.5	22	4.0	<0.50	250	1,300	230	<10	-	2,700	<10		-
	10/22/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	270	<100	<10	-	3,700	<10		1
	4/16/2014	1.9	1.8	15	8.8	<0.50	130	550	<100	<10		3,900	<10		
	10/6/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	270	<100	<10		4,400	<10	1	
	4/21/2015	3.2	1.8	17	17	<0.50	190	630	<100	<10	-	3,600	<10	-	
MW-WAT1-3	4/16/1998	21	150	130	430		2,200	3,400	<500	-	-	-	20	43	640
duplicate	6/19/1998	8.6	92	55	230		1,800	1,900	640			1.00	230	<50	800
	10/16/1998	1.2	7.6	2.6	12	<5	66	250	<500	-	-		10	<5	1
	4/15/1999	26	440	110	680	<50	3,000	3,300	<500	1		1. The state	16.6	110	
	10/26/1999	2.3	23	8.8	36	7	290	200	<300	-		· · · · · · · · · · · · · · · · · · ·	20	<50	i
	4/13/2000	38	410	110	720	<25	3,300	5,600	<500			-	<5	360	
	10/5/2000	0.57	5.7	1.6	5.9	<5	51	210	<500		-		<10	<100	
	3/27/2001	11	48	41	100	<25	1,100	1,700	<1,000	-	-	-		-	-
	10/26/2001	<0.5	<0.5	<0.5	<0.5	<5	<50					· · · · · · · · · · · · · · · · · · ·		1	-
	10/29/2002	1.8	<0.5 UJ	<0.5 UJ	10	_	<50 UJ	<500 UJ	<500	9.8	-	3,040	<24	1	· · · · · ·
	4/28/2003	3.9	8,4	27.4	45	<5	230	400 J	<480	5.4		3,530	<21	ا وسر ال	-
	11/20/2003	2.9	15	7.5	16.6	<10	100	140	<250	24.2		2,500	<50	· · · · · · · · · · · · · · · · · · ·	1
	5/12/2004	3.2	7,2	15	27	6.2	340	750	<250	<15		4,600	<50		
	11/9/2004	0.44	0.58	0.73	1.48	<5.0	<50	<50	<250	<10	-	2,000	<50	1	1
	5/12/2005	8.8	39	79	192	<10	1,800	3,600	1,200	<10		6.700	<50	1000	1

Watsonville,	California
--------------	------------

			Volat	tile Organic Comp	ounds		Total Pe	etroleum Hydro	carbons	Me	etals	1	Other Co	instituents	-
Well ID	Date Sampled Units	Benzene µg/L	Toluene µg/L	Ethylbenzene µg/L	Total Xylenes*	MTBE	TPHg µg/L	TPHd µg/L	TPHmo µg/L	Arsenic **	Hexavalent Chromium µg/L	Ammonia (as Nitrogen) µg/L	Total Cyanide µg/L	Phenolics µg/L	Total Dissolved Solids mg/L
MW-WAT1-3	8/2/2006	3	2.8	19	18.7	<5.0	600	930	420	<10.0		<100	<50		
duplicate	12/19/2006	0.53	1.1	1.6	3.3	<5.0	<50	200	<250	<10.0	-	4,000	<50	-	
(continued)	6/26/2007	2.1	2.6	1.0	9.4	<0.50	270	480	<500	<10.0	-	5.800	12		
(communed)	11/15/2007	0.74	2.4	2.2	4.9	<0.50	53	<50	<500	<5.0		2,100	<10		
	4/22/2008	6.2	17	37	36	<0.50	520	910	<500	<5.0		5,800	<10		
	11/6/2008	20	55	96	180	<0.50	1,100	1,400	<500	6.6	_	5,600	< 10		
	4/8/2009	39	310	260	720	<2.5	4,100	5.800	<300	<9.5	_	8,000	< 10	-	-
	10/13/2009	0.53	0.94	2.3	4.5	<0.50	<50	150	<310	<10		3,400	13		
	4/13/2010	4.8	4.4		27	<0.50	300	1.100	<310	<10		3,400	11		
	10/13/2010	0.36 J	1.5	1.6	5	<0.50	35 J	240 J+	230 J	5.4 J	2	4,300	15	-	-
	5/10/2011	0.30 5	1.0	2.9	3.3	<0.50	70	430	<100	<10		4,000	13	-	
	10/4/2011	2.5	3.0	5.6	6.1	<0.50	240	950	180 UN	<10	- <u>-</u>	7,600	33	_	
	10/22/2012	7.2	9.1	43	33	<0.50	420	860	<100	<10	-	5,800	15	1 100	
	4/23/2013	2.5	1.6	22	4.5	<0.50	270	1,400	220	<10	-	3,000	<10		-
	10/22/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	280	<100	<10		3,900	<10	1	
	4/16/2014	1.9	1.7	14	8.5	<0.50	130	690	<100	<10	-	4.000	<10		-
	10/6/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	240	<100	10		4,200	<10		-
	4/21/2015	3.3	1.8	18	18	<0.50	200	900	<110	<10		3,700	<10		
MW-WAT1-4	3/27/2001	<0.5	1.1	1	18	<5	230	990	<500				<5	<100	
Marcheology 5	10/26/2001	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	-		1. m			
	4/23/2002	<0.5	<0.5	<0.5	-<0.5	<5	<50	180	<500	-	<10	1,400	<10	1	
	10/29/2002	< 0.5	<0.5	<0.5	<1.5 UJ	1.1.1	<50 UJ	<500	<500	<5		402	<24	1.1	1 have 1 and 1 have 1
	4/28/2003	<0.5	<0.5 UJ	1.4	<1.5 UJ	15	33 J	<480	<480	<5		664	<21	-	-
	11/20/2003	<0.30	<0.30	< 0.30	<0.30	<5.0	<50	<50	<250	<15	-	<100	<50	· · · · · · · · · · · · · · · · · · ·	
	5/12/2004	< 0.30	< 0.30	<0.30	<0.60	<5.0	<50	<50	<250	<15		1.800	<50	1	
	11/9/2004	0.54	< 0.30	0.18 J	0.39	<5.0	<50	<50	<250	<10	====-	<100	<50	11	
	5/12/2005	< 0.30	0.78	< 0.30	< 0.30	6.1	<50	110	<250	<10		280	<50		
	8/2/2006	< 0.30	< 0.30	< 0.30	<0.60	<5.0	<50	150	<250	<10.0		<100	<50		
	12/19/2006	<0.50	<0.50	< 0.50	<1.0	<5.0	<50	<50	<250	<10.0		560	<50	1	
	6/26/2007	<0.50	<0.50	< 0.50	<1.0	< 0.50	<50	350	660	<5.0	· · · ·	1,600	<10	· · · · · · · · · · · · · · · · · · ·	1
	11/15/2007	<0.50	< 0.50	< 0.50	<1.0	<0.50	<50	<50	<500	<5.0		610	<10		-
	4/22/2008	1.7	13	2.8	39	<0.50	190	620	<500	<5.0		440	<10		
	11/6/2008	<0.50	<0.50	< 0.50	<1.0	<0.50	<50	110	<500	<5.0		<200	37	-	-
	4/8/2009	< 0.50	1.0	< 0.50	2.4	< 0.50	<50	280	<300	<9.5		750 UN	<10	i	
	10/13/2009	<0.50	< 0.50	<0.50	<1.0	<0.50	<50	55	<310	<10		1,200	<10		-
	4/13/2010	< 0.50	<0.50	< 0.50	<1.0	< 0.50	<50	110	<300	<10		<200	<10		1 - 1
	10/13/2010	0.096J	<0.50	<0.50	<1.0	<0.50	<50	100 J+	140 J	<10	-	1,300	12	· · · · ·	· · · · · ·
	5/10/2011	<0.50	<0.50	< 0.50	<1.0	<0.50	<50	130	<100	<10		1,300	<10	1	11
	10/4/2011	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	86	150 UN	<10	~~ .	1,900	<10		-
	10/22/2012	<0.50	<0.50	<0.50	<1.0	<0.50	<50	82	<93	<10		690	11	1.1.1	1.000
	4/23/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	220	<100	<10	-	1,000	<10	11 Tex 1	-
	10/22/2013	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	58	<100	<10		1.100	<10	1	1

Watsonville, California

	1		Volat	tile Organic Comp	ounds		Total I	Petroleum Hydro	ocarbons	Me	etals	1	Other Co	nstituents	
Well ID	Date Sampled Units	Benzene µg/L	Toluene µg/L	Ethylbenzene µg/L	Total Xylenes*	MTBE	TPHg µg/L	TPHd µg/L	TPHmo µg/L	Arsenic **	Hexavalent Chromium µg/L	Ammonia (as Nitrogen) µg/L	Total Cyanide µg/L	Phenolics µg/L	Total Dissolved Solids mg/L
MW-WAT1-4	4/16/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	87	<100	<10	-	580	18	-	
(continued)	10/6/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	57	<100	<10	-	970	<10		1 . D
(continued)	4/21/2015	<0.50	<0.50	<0.50	<1.0	<0.50	<50	110	<100	<10	-	810	<10		-
MW-WAT1-4 duplicate	4/23/2002	<0.5	<0.5	<0,5	<0.5	<5	<50	150	<570		<0.01	870	<10	=	-
MW-WAT1-5	3/27/2001	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500	-		-	<5	<100	-
	10/26/2001	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/23/2002	<0.5	<0.5	<0.5	<0.5	<5	<50	<50	<500		<10	400	<10		
	10/29/2002	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/28/2003	< 0.5	<0.5 UJ	<0.5	<1.5 UJ	<5	<50	<480	<480	<5	-	<170	<21		
	11/20/2003	NC	NC	NC	NC	NC	NC	NC	NC	NC:	NC	NC	NC	NC	NC
	5/12/2004	< 0.30	< 0.30	< 0.30	<0.60	8.8	<50	<50	<250	<15	-	<100	<50	1	
	11/9/2004	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	5/12/2005	< 0.30	< 0.30	<0.30	<0.30	<5.0	<50	-		<10		<100	<50		11 mm
	8/2/2006	< 0.30	< 0.30	<0.30	<0.60	<5.0	<50	66	<250	<10.0		<100	<50	· · · · · · · · · · · · · · · · · · ·	
-	12/19/2006	< 0.50	<0.50	<0.50	<1.0	<5.0	<50	<50	<250	<10.0		<100	<50	1	1
	6/26/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	100	<500	<5.0		<200	<10	1	1
	11/15/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<500	<5.0	545	<200	<10	1.1	1.
	4/22/2008	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<500	<5.0	-	<200	<10		-
	11/6/2008	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<500	12		<200	<10		
	4/8/2009	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<300	<9.5		<200	<10		-
	10/12/2009	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<300	<10		<200	<10	1	
	4/13/2010	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<300	<10		<200	<10	- 1	11.000
	10/13/2010	<0.50	<0.50	<0.50	<1.0	<0.50	<50	55 UN	150 J	<10	-	120 J	<10		
	5/10/2011	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<100	<10	-	<200	<10		
	10/4/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	110 UN	<10	-	<200	<10		
	10/22/2012	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<48	<95	<10		<200	<10	1	1 - C
	4/23/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<100	<10	-	<200	<10		
	10/22/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<100	<10		<200	<10		-
	4/16/2014	<0.50	<0.50	< 0.50	<1.0	<0.50	<50	<51	<100	<10	-	<200	<10	1	
	10/6/2014	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/21/2015	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<100	<10	-	<200	<10		
MW-WAT1-6	10/13/2009***	<0.50	<0.50	<0.50	<1.0	<0.50	<50	1,800/68	1.000 / <300	<10	-	510	<10		1000
	4/13/2010***	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<50 / <50	<300 / <300	<10	-	<200	11	1 - 242 - 1	
	10/13/2010	<0.50	< 0.50	< 0.50	<1.0	<0.50	<50	70 UN	160 J	<10	-	96 J	6.0 J		
	5/10/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<52	<100	<10		<200	13		
	10/4/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	100 UN	<10	-	<200	<10		-
	10/22/2012	<0.50	< 0.50	<0.50	<1.0	<0.50	<50	<47	<94	<10	-	<200	<10		
	4/23/2013	<0.50	< 0.50	<0.50	<1.0	<0.50	<50	<50	<100	<10		<200	<10		
	10/22/2013	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<99	<10	- 0	<200	<10		
	4/16/2014	< 0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<100	<10		<200	<10		
	10/6/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<52	<100	<10	-	<200	<10		
	4/21/2015	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<100	<10		200	<10	1	

Watsonville, California

	1		Volat	tile Organic Comp	ounds		Total P	etroleum Hydro	carbons	Me	etals		Other Co	nstituents	
Well ID	Date Sampled Units	Benzene µg/L	Toluene µg/L	Ethylbenzene µg/L		MTBE µg/L	TPHg µg/L	TPHd µg/L	TPHmo µg/L	Arsenic **	Hexavalent Chromium µg/L	Ammonia (as Nitrogen) µg/L	Total Cyanide µg/L	Phenolics µg/L	Total Dissolved Solids mg/L
					µg/L						häur				
MW-WAT1-7	10/13/2009	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<50	<300	<10	-	<200	<10		-
	4/13/2010	< 0.50	<0.50	< 0.50	<1.0	<0.50	<50	<52	<310	<10	-	<200	<10	· · · · · · · · · · · · · · · · · · ·	1 · · · · · · · · · · · · · · · · · · ·
	10/13/2010	<0.50	< 0.50	<0.50	<1.0	< 0.50	<50	17 J, UN	100 J	<10		76 J	3.9 J		-
	5/10/2011	<0.50	< 0.50	< 0.50	<1.0	< 0.50	<50	<50	<100	<10	1	<200	<10	1.	1
	10/4/2011	< 0.50	<0.50	< 0.50	<1.0	<0.50	<50	<51	100 UN	<10		<200	<10	· · · · · · · · · · · · · · · · · · ·	-
	10/22/2012	< 0.50	<0.50	< 0.50	<1.0	<0.50	<50	<47	<94	<10	1	<200	<10	1	11 9
	4/23/2013	< 0.50	<0.50	< 0.50	<1.0	<0.50	<50	<50	<99	<10	-	<200	<10	· · · · · ·	
	10/22/2013	<0.50	< 0.50	< 0.50	<1.0	<0.50	<50	<51	<100	<10		<200	<10		
	4/16/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<51	<100	<10	-	<200	<10	والمتحققة والمتحادث	-
	10/6/2014	<0.50	<0.50	<0.50	<1.0	<0.50	<50	<53	<110	<10	-	<200	<10	and the second s	-
	4/21/2015	<0.50	<0.50	<0.50	<1.0	< 0.50	<50	<50	<100	<10	-	<200	<10		-
Drinking Wa	ter MCL (ug/L)	1.0	150	300	1,750	13			-	10			150	110-010	

Notes:

Analytical results presented in **bold** exceed the drinking water maximum contaminant level (MCL), if available

* Total xylenes represents the sum of p/m-xylene and o-xylene; when both constituents were not detected, the higher reporting limit of the individual constituent is shown.

** Beginning in 2003, all samples collected for arsenic analysis have been filtered upon collection.

*** TPHd and TPHmo sample re-analyzed using silica-gel cleanup: initial TPHd and TPHmo concentration on left, and TPHd and TPHmo concentrations with silica-gel cleanup on right.

MTBE = methyl tert-butyl ether

MGP= manufactured gas plant

TPHg = total petroleum hydrocarbons (TPH) quantified as gasoline

TPHd = TPH quantified as diesel

TPHmo = TPH quantified as motor oil

µg/L = micrograms per liter

mg/L = milligrams per liter

VOC = volatile organic compound

"<" = analyte not detected at or above laboratory reporting limit shown

"J" = analyte detected at an estimated concentration between the laboratory method detection limit and reporting limit

"UJ" = analyte detected at an estimated concentration below the reporting limit, but was changed to non-detected above reporting limit based on detected concentration in associated QA/QC sample

"UN" = reported result considered tentative non-detect due to a detection of the compound in an associated QA/QC sample, where the result in the primary sample is less than 5 times that of the QA/QC sample

"J+" = reported result believed to be biased high due to a detection of the compound in an associated QA/QC sample, where the result in the primary sample is 5-20 times that of the QA/QC sample

"NC" = sample was not collected due to insufficient water column

"MCL" = Maximum Contaminant Level based on Federal Drinking Water Standards (USEPA) (last updated May 2009) or California EPA (last updated May 2009); the more stringent MCL is shown

--- = not analyzed / no data (MCL has not been established for compound)

Source: modified from ENV America (2005) and Shaw (2003)

Well ID	Date Sampled	Filtered / Unfiltered	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo(a) Anthra- cene	Benzo(b) Fluoran- thene	Benzo(k) Fluoran- thene	Benzo (g,h,i) perylene	Benzo(a) pyrene	Chrysene	Dibenz (a,h) Anthra- cene	Fluoran- thene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naph- thalene	Phenan- threne	Pyrene
		Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-WAT1-1	6/24/1991	Unfiltered	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	10/17/1997	Filtered	<0.1	<0.1	< 0.051	<0.15	<0.1	< 0.051	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.15
	10/17/1997	Unfiltered	<0.1	<0.1	<0.051	<0.15	<0.1	<0.051	<0.1	<0.1	<0,1	<0.1	<0.2	<0,1	<0.1	<0.1	<0.1	<0.15
	4/16/1998	Filtered	NC	NC	NC	NC	NC	NC	NG	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/16/1998	Unfiltered	<0.1	<0,1	<0.05	<0.15	<0.1	<0.05	<0,1	<0.1	<0,1	<0.1	<0.2	<0,1	<0.1	<0,1	<0.1	<0.15
	6/19/1998	Unfiltered	<10	<10	<0.5	<0.5	<1	<0.5	<2	<0.5	<0.5	<2	<1	<1	<0.5	<5	<0.5	<1
	10/16/1998	Filtered	NC	NC	NC	NC	NC-	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	10/16/1998	Unfiltered	<0.1	<0.1	<0.05	<0.15	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.15
	4/15/1999	Filtered	<0.1	<0,1	<0.052	<0.15	<0.1	<0.052	<0.1	<0.1	<0,1	<0.1	<0.21	<0.1	<0.1	0.67	<0.1	<0.15
	4/15/1999	Unfiltered	<0.1	<0.1	<0.05	<0.15	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	0.14	<0.1	<0.15
	10/26/1999	Filtered	NC	NC:	NC	NC	NC	NC	NC	NC	NC	NC	NC.	NC	NC	NC	NC	NC
	10/26/1999	Unfiltered	<1	<10	<0.5	<0.1	<0.2	<0,1	<0.2	<0.1	<0,1	<0.2	<0.4	<1	<0.14	<5	<0.5	<0.2
	4/13/2000	Filtered	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
-	10/5/2000	Filtered	<0.1	<0,1	<0.05	<0,1	<0.1	<0.05	<0.1	<0.1	<0,1	<0.1	<0.15	<0,1	<0.1	<0.15	<0,1	<0.15
	3/27/2001	Filtered	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	10/26/2001	Filtered	<0.1	<0,1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	4/23/2002	Filtered	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	10/29/2002	Filtered	<5	<2	< 0.05	<0.1	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.18	<0.15	<0.1	<0.1	<5	<0.1	<0.15
	4/28/2003	Filtered	<5	<2	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0,1	<0.18	<0.15	<0,1	<0,1	<5	<0.1	<0.15
	11/20/2003	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.062 J	0.64 J
	5/12/2004	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1,0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0
	11/9/2004	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	5/12/2005	Filtered	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.19	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94
	8/2/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/19/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	6/26/2007	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	11/15/2007	Filtered	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12
	4/22/2008	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	11/6/2008	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	4/8/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/12/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Well ID	Date Sampled	Filtered / Unfiltered	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo(a) Anthra- cene	Benzo(b) Fluoran- thene	Benzo(k) Fluoran- thene	Benzo (g,h,i) perylene	Benzo(a) pyrene	Chrysene	Dibenz (a,h) Anthra- cene	Fluoran- thene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naph- thalene	Phenan- threne	Pyrene
		Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-WAT1-1	10/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
(continued)	5/10/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/4/2011	Unfiltered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	10/22/2012	Unfiltered	<0.095	<0.095	<0.095	<0.095	<0,095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095
	4/23/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/16/2014	Unfiltered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	10/6/2014	Unfiltered	NC	NC.	NC	NC	NC.	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/21/2015	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
MW-WAT1-2	6/24/1991	Unfiltered	8.6	8.6	<5	<5	<5	<5	<5	<5	<5	<5	<5	5.5	<5	5.2	<5	<5
	10/17/1997	Filtered	<0.12	<0.12	< 0.059	<0.12	<0.12	<0.059	<0.12	<0.12	<0.12	<0.12	<0.24	<0.12	<0.11	<0.12	<0.12	<0.18
	10/17/1997	Unfiltered	<0.11	<0.11	<0.056	<0.11	<0.11	<0.056	<0.11	<0.11	<0.11	<0.11	<0.22	<0.11	<0.11	<0.11	<0.11	<0.17
	4/16/1998	Filtered	<0.1	3.8	0.17	<0.15	<0.1	<0.05	<0.1	<0.1	<0,1	<0.1	<0.2	<0,1	<0.1	<0.1	<0.1	0.36
	4/16/1998	Unfiltered	<0.1	2.6	0.75	0.4	<0.1	<0.05	0.74	<0.1	0.39	<0.1	1.4	<0.1	0.32	<0.1	<0.1	1.2
	6/19/1998	Unfiltered	<10	<10	<0.5	<0.5	<1	<0.5	<2	<0.5	<0,5	<2	<1	<1	<0.5	<5	<0.5	<1
	10/16/1998	Filtered	NC	NC	NC	NC	NC	NG	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	10/16/1998	Unfiltered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/15/1999	Filtered	<0.1	<0.1	<0.05	<0.15	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.15
	4/15/1999	Unfiltered	11	<2	<1	<3.1	<2	<1	<2	<2	<2	<2	<4,1	21	<2	410	8,7	<3.1
	10/26/1999	Filtered	NC	NC	NG	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	10/26/1999	Unfiltered	NC	NC:	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC.	NC	NC	NC
	4/13/2000	Filtered	<0.1	<0.1	<0.05	<0,1	<0.1	<0.05	<0,1	<0.1	<0,1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	10/5/2000	Filtered	NC	NC.	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	3/27/2001	Filtered	<0.1	<0.1	<0.05	<0,1	<0.1	<0.05	<0.1	<0.1	<0,1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	10/26/2001	Filtered	NC	NC	NC	NC	NC	NG	NC	NC	NG	NC	NC	NC	NC	NC	NC	NC
	4/23/2002	Filtered	NC	NC:	NC	NC	NC	NC	NC	NC:	NC	NC	NC	NC	NC	NC.	NC	NC
	10/29/2002	Filtered	NG	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/28/2003	Filtered	NC	NC:	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	11/20/2003	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	5/12/2004	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	11/9/2004	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC.	NC	NC	NC	NC	NC
	5/12/2005	Filtered	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.19	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94
	8/2/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/19/2006	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	6/26/2007	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Well ID	Date Sampled	Filtered / Unfiltered	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo(a) Anthra- cene	Benzo(b) Fluoran- thene	Benzo(k) Fluoran- thene	Benzo (g,h,i) perylene	Benzo(a) pyrene	Chrysene	Dibenz (a,h) Anthra- cene	Fluoran- thene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naph- thalene	Phenan- threne	Pyrene
		Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-WAT1-2	11/15/2007	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
(continued)	4/22/2008	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	11/6/2008	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/8/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/13/2009	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/13/2010	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	5/10/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/4/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2012	Unfiltered	<0.095	<0.095	< 0.095	< 0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095
	4/23/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2013	Unfiltered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/16/2014	Unfiltered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	10/6/2014	Unfiltered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/21/2015	Unfiltered	NC	NC	NC	NC	NC.	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
MW-WAT1-3	6/24/1991	Unfiltered	40	74	20	<5	<5	<5	<5	<5	<5	<5	<5	42	<5	<5	33	16
	10/17/1997	Filtered	<0.1	<0.1	<0.051	<0.15	<0.1	<0.051	<0.1	<0,1	<0.1	<0.1	<0.2	<0,1	<0.1	11	<0,1	<0.15
	10/17/1997	Unfiltered	4.6	0.72	11	<0.11	<0.11	<0.054	<0.11	<0.11	0.24	<0.11	1.4	7.9	<0.11	18	<0.11	<0.16
	4/16/1998	Filtered	11	230	1,8	<3	<2	<1	<2	<2	<2	<2	8	12	*2	260	2.5	<3
	4/16/1998	Unfiltered	12	230	3.1	<3	<2	<1	<2	<2	<2	<2	<4	19	<2	290	4.4	<3
	6/19/1998	Unfiltered	<10	120	1.9	<0.5	~1	<0,5	<2	< 0.5	<0,5	<2	<1	11	<0.5	<5	2.6	<1
	10/16/1998	Filtered	<0.1	<0.1	<0.05	<0.15	<0.1	<0.05	<0.1	<0.1	<0,1	<0.1	<0.2	<0.1	<0.1	0.4	<0.1	<0.15
	10/16/1998	Unfiltered	<0.1	<0.1	24	<0.15	<0.1	<0.05	<0,1	0.51	<0.1	<0.1	1.3	<0,1	<0.1	1.7	<0.1	0.7
	4/15/1999	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	4/15/1999	Unfiltered	<2.2	<2.2	1.9	<3.3	<2.2	<1.1	<2.2	<2.2	<2.2	<2.2	<4.3	23	<2.2	440	6,5	<3.3
	10/26/1999	Filtered	4	<10	4,6	<0.1	<0.2	<0.1	<0.2	<0.1	<0,1	<0.2	<0.4	5	<0.14	34	<0.5	<0.2
	10/26/1999	Unfiltered	<1	<10	6.4	0.2	<0.2	<0.1	<0.2	0.2	0.4	<0.2	1.2	5.4	<0.14	38	<0.5	1.1
	4/13/2000	Filtered	<2	<2	<1	<2	<2	<1	<2	<2	<2	<2	<3	19	<2	510	5.8	<3
	10/5/2000	Filtered	<0.1	<0.1	0.73	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	3/27/2001	Filtered	<5	<5	<2.5	<5	<5	<2.5	<5	<5	<5	<5	<7.5	<5	<5	97	<5	<7.5
	10/26/2001	Filtered	0.33	0.95	0.6	<0.1	<0.1	<0.05	<0,1	<0.1	<0,1	<0.1	0.28	0.67	<0.1	<0.15	<0.1	<0.15
	4/23/2002	Filtered	18	19	1.5	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	0.98	1.6	<0.1	13	0.46	0.97
	10/29/2002	Filtered	<5	<2	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.18	<0.15	<0.1	<0.1	<5	<0.1	<0.15
	4/28/2003	Filtered	<5	26 J	0.93 J	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.18	0.37	1.4 J	<0.1	14 J	0.07 J	0.25
	11/20/2003	Filtered	<1.0	<1.0	0.16 J	0.15 J	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	0.41 J	<1.0	<1.0	<1.0	0.18 J	<1.0

Well ID	Date Sampled	Filtered / Unfiltered	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo(a) Anthra- cene	Benzo(b) Fluoran- thene	Benzo(k) Fluoran- thene	Benzo (g,h,i) perylene	Benzo(a) pyrene	Chrysene	Dibenz (a,h) Anthra- cene	Fluoran- thene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naph- thalene	Phenan- threne	Pyrene
		Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-WAT1-3	5/12/2004	Filtered	<1.0	<1.0	1.7	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	0.60J	2.2	<1.0	42	0.14J	0.27J
(continued)	11/9/2004	Filtered	<1.0	<1.0	2.1	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	0.66 J	<1.0	<1.0	<1.0	0.068 J	0.70 J
	5/12/2005	Filtered	<0.94	<0.94	0.53 J	<0.94	<0.94	<0.94	<0.94	<0.19	<0.94	<0.94	<0.94	7.4	<0.94	NA	0.73 J	<0.94
	8/2/2006	Filtered	2,7	19	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.20	<1.0	<1.0	<1.0	7.5	<1.0	23	<1.0	<1.0
	12/19/2006	Filtered	<1.0	3.1	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0
	6/26/2007	Filtered	1.7	1.8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.48	<0.10	3.3	<0.10	<0.10
	11/15/2007	Filtered	0.15	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	0.12	<0.11	<0.11
	4/22/2008	Filtered	3.4	3.3	0.82	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	2,3	< 0.51	29	<0.51	<0.51
	11/6/2008	Filtered	3.9	8.8	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2,0	<2.0	<2.0	2,3	<2.0	99	<2.0	<2.0
	4/8/2009	Filtered	13	16	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	12	<5.2	450	<5.2	<5.2
	10/13/2009	Filtered	1,3	1,1	<0.10	<0:10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	0,30	<0.10	3.0	<0,10	<0.10
	4/13/2010	Filtered	6.2	6.8	<0,11	<0.11	<0.11	<0,11	<0.11	<0.11	<0,11	<0.11	<0.11	1.20	<0.11	62	<0.11	<0.11
	10/13/2010	Filtered	0.13	0.057 J	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0,10*	<0.10	<0.10	<0.10	0.47 J+	<0.10	<0.10
	5/10/2011	Unfiltered	4	3.7	- 11 - 1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.2	1.90	<0.10	14	0.19	0.23
	10/4/2011	Unfiltered	7.7	5.1	1.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.21	3.90	<0.10	3	<0.10	0.18
	10/22/2012	Unfiltered	5.1	3.7	1.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.18	2.6	<0.10	21	0.17	0.2
	4/23/2013	Unfiltered	8.1	6,3	2.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.39	5,20	<0.10	13	1.1	0.33
	10/22/2013	Unfiltered	2.9	2.2	1.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.27	1.40	<0.10	0	<0.10	0.27
	4/16/2014	Unfiltered	6	4.8	1.6	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	0.25	3.80	<0,11	13	0.23	0.2
	10/6/2014	Unfiltered	2.0	1.2	0.95	<0.10	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	0.16	0.68	<0.10	0.15	<0.10	0,15
	4/21/2015	Unfiltered	4.7	4.0	tt	<0.11	<0.11	<0,11	<0.11	<0.11	<0.11	<0.11	0 18	1.3	<0.11	27	0,44	0,21
MW-WAT1-3	4/16/1998	Filtered	9.7	210	1.2	<1.5	<1	<0,5	<1	<1	<1	<1	<2	10	<1	250	1.8	<1.5
duplicate	4/16/1998	Unfiltered	18	360	4	<3	<2	<1	<2	<2	<2	<2	<4	22	2	360	5.4	<3
	6/19/1998	Unfiltered	<10	160	2.1	<0.5	<1	<0.5	<2	<0.5	<0.5	<2	<1	13	<0.5	77	2.6	<1
	10/16/1998	Filtered	<0.1	<0.1	<0.05	<0.15	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.15
	10/16/1998	Unfiltered	<0.1	<0,1	2.6	0.2	<0.1	<0.05	<0.1	0.36	<0,1	<0.1	1.3	<0,1	<0.1	1.6	<0.1	0.49
	4/15/1999	Unfiltered	<2	<2	<1	<3	<2	<1	<2	<2	<2	<2	<4	27	<2	440	8.8	<3
	10/26/1999	Filtered	<1	<10	.4	<0.1	<0.2	<0.1	<0.2	<0.1	<0,1	<0.2	<0.4	4.2	<0.14	32	<0.5	<0.2
	10/26/1999	Unfiltered	<1	<10	6.6	0.2	<0.2	<0.1	<0.2	0.1	0.3	<0.2	1.1	6	<0.14	39	<0.5	1
	4/13/2000	Filtered	<2	<2	<1	<2	<2	<1	<2	<2	<2	<2	<3	19	<2	580	5.4	<3
	10/5/2000	Filtered	1.2	<0.1	1.4	<0,1	<0.1	<0.05	<0,1	<0.1	<0,1	<0.1	<0.15	1.8	<0,1	4,5	<0.1	<0,15
	3/27/2001	Filtered	<0.96	<0.96	4.1	<0.96	<0.96	<0.48	<0.96	<0.96	<0.96	<0.96	<1.4	7.6	<0.96	120	3.6	<1.4
	10/29/2002	Filtered	<5	<2	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0,18	<0.15	<0.1	<0.1	<5	<0.1	<0.15
	4/28/2003	Filtered	<5	17 J	0.41 J	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.18	<0.15	0.69 J	<0.1	9 J	0.07 J	<0.15
	11/20/2003	Filtered	<1.0	<1.0	<1.0	0.17 J	<1.0	<1.0	<1.0	< 0.20	<1.0	<1.0	<1.0	<1.0	<1.0	0.66 J	0.13 J	<1.0

Well ID	Date Sampled	Filtered / Unfiltered	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo(a) Anthra- cene	Benzo(b) Fluoran- thene	Benzo(k) Fluoran- thene	Benzo (g,h,i) perylene	Benzo(a) pyrene	Chrysene	Díbenz (a,h) Anthra- cene	Fluoran- thene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naph- thalene	Phenan- threne	Pyrene
		Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-WAT1-3	5/12/2004	Filtered	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<0.2	<1.0	<1.0	0.32J	2.3	<1.0	47	0.14J	0.2J
duplicate	11/9/2004	Filtered	<1.0	<1.0	2	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	0.63 J	<1.0	<1.0	<1.0	<1.0	0.64 J
(continued)	5/12/2005	Filtered	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.19	<0.94	<0.94	<0.94	NA	<0.94	NA	0.11 J	<0.94
	8/2/2006	Filtered	4.7	21	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	8.1	<1.0	26	<1.0	<1.0
	12/19/2006	Filtered	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0
	6/26/2007	Filtered	3.3	3.1	0.35	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	2.2	<0.10	4.7	<0.10	<0.10
	11/15/2007	Filtered	0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	0.16	<0.11	<0.11
	4/22/2008	Filtered	.5	4.9	0.99	<0.51	< 0.51	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51	3.5	<0.51	40	<0.51	< 0.51
	11/6/2008	Filtered	3.9	6.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	100	<1.0	<1.0
	4/8/2009	Filtered	13	16	<5.1	<5,1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	11	<5.1	460	<5.1	<5.1
	10/13/2009	Filtered	1.3	1.1	0.13	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.40	<0.10	3.0	<0.10	<0.10
	4/13/2010	Filtered	9.3	9.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	4.40	<0.10	74	<0.10	<0.10
	10/13/2010	Filtered	0.6	0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10*	<0.10	0.032 J	<0.10	1.6 J+	<0.10	<0.10
	5/10/2011	Unfiltered	4.3	3.9	1.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.21	2.0	<0.10	14	0.18	0.23
	10/4/2011	Unfiltered	5.7	3.8	1.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.17	2.8	<0.10	2	<0.10	0.14
	10/22/2012	Unfiltered	4.8	3.4	1.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.17	2.5	<0.10	19	0.15	0.19
	4/23/2013	Unfiltered	6,9	5.4	1.8	<0.10	<0.10	<0.10	<0.10	<0.10	<0:10	<0.10	0.36	4.3	<0.10	12	0.9	0.33
	10/22/2013	Unfiltered	2.5	1.8	1.1	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10	0.25	1.1	<0.10	0	<0.10	0.26
	4/16/2014	Unfiltered	6.1	4.9	1.6	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.24	4.0	< 0.10	13	0.24	0.2
	10/6/2014	Unfiltered	1.6	0.93	0.76	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.14	0.47	<0.10	0.13	<0.10	0.14
	4/21/2015	Unfiltered	3.6	2.9	0.98	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.16	1.0	<0.10	18	0.32	0.18
MW-WAT1-4	3/27/2001	Filtered	<2	30	6.3	9.7	8.5	<1	<2	9.9	7.5	<2	7.6	12	<2	94	9.6	4.6
	10/26/2001	Filtered	<0.11	0.56	0.18	<0.11	<0.11	<0.056	<0.11	<0.11	<0.11	<0.11	0.26	<0.11	<0.11	<0.17	<0.11	<0.17
	4/23/2002	Filtered	24	10	1.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	0.35	3.1	<0.1	8.6	0.4	<0.15
	10/29/2002	Filtered	<5	<2	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.18	<0.15	<0.1	<0.1	<5	<0.1	<0.15
	4/28/2003	Filtered	<5	<2	<0.05	<0.1	<0.1	0.03 J	0.2	0.1	<0.1	0.27	<0.15	<0.1	L 80.0	<5	<0.1	<0.15
	11/20/2003	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	5/12/2004	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0
	11/9/2004	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	5/12/2005	Filtered	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.19	<0,94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94
	8/2/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/19/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	6/26/2007	Filtered	<0.10	0.41	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	11/15/2007	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	4/22/2008	Filtered	<0.10	0.36	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0,10	<0,10	<0,10	4.3	<0.10	<0.10
	11/6/2008	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	4/8/2009	Filtered	0.46	1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.24	<0.10	<0.10

Well ID	Date Sampled	Filtered / Unfiltered	Acenaph- thene	Acenaph- thylene	Anthra- cene	Benzo(a) Anthra- cene	Benzo(b) Fluoran- thene	Benzo(k) Fluoran- thene	Benzo (g,h,i) perylene	Benzo(a) pyrene	Chrysene	Dibenz (a,h) Anthra- cene	Fluoran- thene	Fluorene	Indeno- (1,2,3-cd)- pyrene	Naph- thalene	Phenan- threne	Pyrene
		Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MW-WAT1-4	10/13/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
(continued)	4/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.2	<0.10	<0.10
	10/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10*	0.035 J	<0.10	<0.10	<0.10	0.030 J	<0.10
	5/10/2011	Unfiltered	<0.10	0.40	0.63	<0.10	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	0.20	<0.10	<0.10	<0,10	<0.10	0.13
	10/4/2011	Unfiltered	<0.10	<0.10	0.29	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.34	<0.10	<0.10	<0.10	<0.10	0.26
	10/22/2012	Unfiltered	<0.094	<0.094	< 0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	< 0.094	< 0.094	<0.094	<0.094	< 0.094	< 0.094
	4/23/2013	Unfiltered	<0.10	0,70	1.50	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.93	<0.10	<0.10	<0.10	0.13	0,62
	10/22/2013	Unfiltered	<0.10	0.16	0.23	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	<0.10	<0,10	<0.10	0,17
	4/16/2014	Unfiltered	<0.10	0.46	0.73	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.28	<0.10	<0.10	<0.10	<0.10	0.17
	10/6/2014	Unfiltered	<0.10	<0.10	0.17	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.18	<0.10	<0.10	<0.10	<0.10	0.24
and the second s	4/21/2015	Unfiltered	<0.10	0.14	0.58	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	0.34	<0.10	<0.10	<0.10	<0.10	0.34
MW-WAT1-4 duplicate	4/23/2002	Filtered	18	11	0.95	<0,1	<0.1	<0.05	<0,1	<0,1	<0.1	<0.1	0.52	1.5	<0.1	6.2	0.29	<0.15
MW-WAT1-5	3/27/2001	Filtered	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	10/26/2001	Filtered	NC	NC:	NC	NC	NC	NC	NC	NC:	NC	NC	NC	NC	NC	NC	NC	NC
	4/23/2002	Filtered	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.15	<0.1	<0.1	<0.15	<0.1	<0.15
	10/29/2002	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC.	NC	NC	NC	NC	NC
	4/28/2003	Filtered	<5	<2	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0,1	<0.18	<0.15	<0.1	<0.1	<5	<0.1	<0.15
	11/20/2003	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	5/12/2004	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0
	11/9/2004	Filtered	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	5/12/2005	Filtered	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.94	<0.19	<0.94	< 0.94	<0,94	<0.94	<0,94	0.56 J	<0.94	<0.94
	8/2/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/19/2006	Filtered	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	6/26/2007	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	11/15/2007	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/22/2008	Filtered	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
	11/6/2008	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/8/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/12/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/13/2010	Filtered	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	5/10/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0:10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/4/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2012	Unfiltered	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	< 0.095	<0.095	<0.095	<0.095	<0.095
	4/23/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Well ID	Date Sampled	Filtered / Unfiltered Units	Acenaph- thene µg/L	Acenaph- thylene µg/L	Anthra- cene µg/L	Benzo(a) Anthra- cene µg/L	Benzo(b) Fluoran- thene µg/L	Benzo(k) Fluoran- thene µg/L	Benzo (g,h,i) perylene µg/L	Benzo(a) pyrene µg/L	Chrysene µg/L	Dibenz (a,h) Anthra- cene µg/L	Fluoran- thene µg/L	Fluorene µg/L	Indeno- (1,2,3-cd)- pyrene µg/L	Naph- thalene µg/L	Phenan- threne µg/L	Pyrene µg/L
MW-WAT1-5	10/22/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
(continued)	4/16/2014	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
(commody)	10/6/2014	Unfiltered	NC NC	NC NC	NC	NC	NC NC	NC NC	NC	NC	NC	NC	NC	NC	NC	NC	NC NC	NC
	4/21/2015	Unfiltered	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
MW-WAT1-6	10/13/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
WW-WATT-0	4/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	5/10/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/4/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2012	Unfiltered	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094
	4/23/2012	Unfiltered	<0.10	<0.094	<0.094	<0.094	<0.094	<0.10	<0.10	<0.10	<0.10	<0.094	<0.094	<0.094	<0.10	<0.094	<0.094	<0.094
	4/23/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/16/2014	in the second second	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/6/2014	Unfiltered Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/21/2015	1.01.0000.01.0	<0.10				<0.10					<0.10			<0.10		-	<0.10
LAND MATE 7		Unfiltered		<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10		<0.10	<0.10		<0.10	<0.10	
MW-WAT1-7	10/13/2009	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/13/2010	Filtered		<0.10						1	<0.10		<0.10	<0.10		<0.10	<0.10	<0.10
	10/13/2010	Filtered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	5/10/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/4/2011	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2012	Unfiltered	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096
	4/23/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0:10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	10/22/2013	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/16/2014	Unfiltered	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0,10	<0.10	<0.10
	10/6/2014	Unfiltered	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	4/21/2015	Unfiltered	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0,10	<0.10	<0.10	<0.10	<0.10	<0.10
	Drinking W	/ater MCL (ug/L)			1	(****)	**		1.00	0.2			-			()	2000	

Notes:

Analytical results presented in **bold** exceed the MCL, if available

PAHs = polycyclic aromatic hydrocarbons

µg/L = micrograms per liter

"<" = analyte not detected at or above laboratory reporting limit shown

"J" = analyte detected at an estimated concentration between the laboratory method detection limit and the reporting limit

"J+" = reported result believed to be biased high due to a detection of the compound in an associated OA/QC sample, where the result in the primary sample is 5-20 times that of the QA/QC sample

* = LCS and/or LCSD recovery exceeds the laboratory control limits

"NC" = not collected due to insufficient water column

MGP = manufactured gas plant

MCL = Maximum Contaminant Level based on Federal Drinking Water Standards (USEPA) (last updated June 2003) or California EPA (last updated September 2003); the more stringent MCL is shown

--- = MCL has not been established for compound

Source: modified from ENV America (2005) and Shaw (2003)

Probe Group	h				S	G-1				
Probe Location ID	SG-1		SG-	1A	-		- A -	SG-1B	- A	
Sample Depth (feet bgs)	5	5	5	5	5	5	5	5	5	5
EPA Analytical Method	8260B	8260B	TO-15	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TQ-15
Sample Date	2/13/08	10/12/09	CONF 10/12/09	4/26/10	10/13/10	6/29/11	10/3/11	11/6/12	4/18/13	10/14/13
TPHq	NA	6.17	8.5	NS	NS	ND (0.26)	ND (0.23)	ND (0.26)	2.7	ND (0.24)
1.2.4-Trichlorobenzene	ND (0.007)	ND (0.008)	ND (0.019)	NS	NS	ND (0.038)	ND (0.033) UJ	ND (0.037)	ND (0.035)	ND (0.034)
1.2.4-Trimethylbenzene	ND (0.007)	0.142	ND (0.0064)	NS	NS	ND (0.0063)	ND (0.0055)	ND (0.0062)	0.12	ND (0.0057)
1,3,5-Trimethylbenzene	ND (0.007)	0.021	ND (0.0054)	NS	NS	ND (0.0063)	ND (0.0055)	ND (0.0062)	0.035	ND (0.0057
1,3-Butadiene	NA	NA	NA	NS	NS	ND (0.0028)	ND (0.0025)	ND (0.0028)	ND (0.0026)	ND (0.0026
2,2,4-Trimethylpentane	NA	NA	NA	NS	NS	ND (0.0060)	ND (0.0052)	ND (0.0059)	0.029	ND (0.0054
2-Butanone (MEK)	NA	NA	0.0083 J	NS	NS	ND (0.015)	ND (0.013)	ND (0.015)	ND (0.014)	ND (0.014)
4-Ethvitoluene	NA	NA	ND (0.0049)	NS	NS	ND (0.0063)	ND (0.0055)	ND (0.0062)	0.093	ND (0.0057)
4-Isopropyltoluene	ND (0.007)	0.043	NA	NS	NS	NA	NA	NA	NA	NA
Acetone	NA	NA	0.036	NS	NS	ND (0.012)	ND (0.011)	ND (0.030)	ND (0.028)	ND (0.028)
Benzene	ND (0.007)	ND (0.008)	ND (0.0048)	NS	NS	ND (0.0041)	ND (0.0036)	ND (0.0040)	0.010	ND (0.0037)
Bromodichloromethane	ND (0.007)	0.030	ND (0.0067)	NS	NS	ND (0.0086)	ND (0.0075)	ND (0.0084)	ND (0.0079)	ND (0.0078)
n-Butylbenzene	ND (0.007)	0.059	NA	NS	NS	NA	NA	NA	NA	NA
sec-Butylbenzene	ND (0.007)	0.140	NA	NS	NS	NA	NA	NA	NA	NA
tert-Butylbenzene	ND (0.007)	ND (0.008)	NA	NS	NS	NA	NA	NA	NA	NA
Carbon disulfide	NA	NA	ND (0.0062)	NS	NS	ND (0.016)	ND (0.014)	ND (0.016)	ND (0.015)	ND (0.014)
Garbon tetrachloride	ND (0.007)	ND (0.008)	ND (0.0063)	NS	NS	ND (0.0081)	ND (0.0070)	ND (0.0079)	ND (0.0074)	ND (0.0073)
Chloroform	ND (0.007)	0.384	0.56	NS	NS	0.58	0.049	0.033	0.18	0.080
Cyclohexane	NA	NA	NA	NS	NS	ND (0.0044)	ND (0.0038)	ND (0.0043)	0.015	0.0053
Dichlorodifluoromethane (Freon 12)	ND (0.007)	ND (0.008)	ND (0.0074)	NS	NS	ND (0.0064)	ND (0.0055)	ND (0.0062)	ND (0.0058)	ND (0.0057)
Ethanol	NA	NA	NA	NS	NS	ND (0.0097)	ND (0.0084)	ND (0.0095)	0.088	ND (0.0087
Ethylbenzene	ND (0.007)	0.018	0.0051 J	NS	NS	ND (0.0056)	ND (0.0049)	ND (0.0055)	0.039	ND (0.0050)
Heptane	NA	NA	NA	NS	NS	ND (0.0053)	ND (0.0046)	ND (0.0052)	0.019	ND (0.0048)
Hexane	NA	NA	NA	NS	NS	ND (0.0045)	ND (0.0039)	ND (0.0044)	0.011	ND (0.0041)
Isopropylbenzene (Cumene)	ND (0.007)	0.025	NA	NS	NS	ND (0.0063)	ND (0.0055)	ND (0.0062)	ND (0.0058)	ND (0.0057)
Methylene chloride	ND (0.007)	ND (0.008)	0.011 UN	NS	NS	0.0045 UN	ND (0.0039)	ND (0.044)	ND (0.041)	ND (0.040)
Naphthalene	ND (0.007)	ND (0.008)	ND (0.016)	NS	NS	ND (0.027)	ND (0.023) UJ	ND (0.026)	ND (0.025)	ND (0.024)
n-Propylbenzene	ND (0.007)	ND (0.008)	NA	NS	NS	ND (0.0063)	ND (0.0055)	ND (0.0062)	0.014	ND (0.0057)
Styrene	ND (0.007)	ND (0.008)	ND (0.0043)	NS	NS	ND (0.0055)	ND (0.0048)	ND (0.0054)	ND (0.0050)	ND (0.0049)
Tetrachloroethene	ND (0.007)	ND (0.008)	ND (0.0068)	NS	NS	ND (0.0088)	ND (0.0076)	ND (0.0085)	ND (0.0080)	ND (0.0079
Toluene	0.013	ND (0,008)	0.013	NS	NS	ND (0.0049)	ND (0.0042)	ND (0.0047)	0.14	ND (0.0044
Trichlorofluoromethane (Freon 11)	ND (0.007)	ND (0.008)	ND (0.0056)	NS	NS	ND (0.0072)	ND (0.0063)	ND (0.0071)	ND (0.0066)	ND (0.0065
Vinyl Chloride	ND (0.007)	ND (0.008)	ND (0.0051)	NS	NS	ND (0.0033)	ND (0.0029)	ND (0.0032)	ND (0.0030)	ND (0.0030
m,p-Xylene	NA	NA	NA	NS	NS	ND (0.0056)	ND (0.0049)	ND (0.0055)	0.18	ND (0.0050
o-Xylene	NA	NA	NA	NS	NS	ND (0.0056)	ND (0.0049)	ND (0.0055)	0.067	ND (0.0050
Xylenes (total)	ND (0.007)	0.202	0.027	NS	NS	NA	NA	NA	NA	NA
Other VOCs	ND	ND	ND	NS	NS	ND	ND	ND	ND	0.0036 4

Probe Group	1					SG-1						-
Probe Location ID		SG-1B			SG-1A	II			SG	-1B		
Sample Depth (feet bgs)	5	5	5	9	9	9	9	9	9	9	9	9
EPA Analytical Method	TO-15	TO-15	TO-15	8260B	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	4/7/14	10/7/14	4/14/15	10/12/09	4/26/10	10/13/10	6/29/11	10/3/11	11/6/12	4/18/13	10/14/13	4/7/14
TPHg	ND (0.24)	0,49	ND (0.47)	1.49	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene	ND (0.035)	ND (0.034)	ND (0.034)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene	ND (0.0058)	ND (0.0057)	ND (0.0056)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	ND (0.0058)	ND (0.0057)	ND (0.0056)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
1,3-Butadiene	ND (0.0026)	ND (0.0026)	ND (0.0025)	NA	NS	NS	NS	NS	NS	NS	NS	NS
2,2,4-Trimethylpentane	ND (0.0055)	ND (0.0054)	ND (0.0053)	NA	NS	NS	NS	NS	NS	NS	NS	NS
2-Butanone (MEK)	ND (0.014)	0.019	ND (0.014)	NA	NS	NS	NS	NS	NS	NS	NS	NS
4-Ethyltoluene	ND (0.0058)	ND (0.0057)	ND (0.0056)	NA	NS	NS	NS	NS	NS	NS	NS	NS
4-Isopropyltoluene	NA	NA	NA	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	0.031	0.057	ND (0.027)	NA	NS	NS	NS	NS	NS	NS	NS	NS
Benzene	ND (0.0038)	0.018	ND (0.0036)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Bromodichloromethane	ND (0.0079)	ND (0.0078)	ND (0.0077)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
n-Butvibenzene	NA	NA	NA	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	NA	NA	NA	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
tert-Butylbenzene	NA	NA	NA	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Carbon disulfide	ND (0.015)	ND (0.014)	ND (0.014)	NA	NS	NS	NS	NS	NS	NS	NS	NS
Carbon tetrachloride	ND (0.0074)	ND (0.0073)	ND (0.0072)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Chloroform	0.26	0.66	1.3	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Cyclohexane	ND (0.0041)	ND (0.0040)	ND (0.0039)	NA	NS	NS	NS	NS	NS	NS	NS	NS
Dichlorodifluoromethane (Freon 12)	ND (0.0058)	ND (0.0058)	ND (0.0057)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Ethanol	0.0093	0.014	0.014	NA	NS	NS	NS	NS	NS	NS	NS	NS
Ethylbenzene	ND (0.0051)	ND (0.0050)	ND (0.0050)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Heptane	ND (0.0048)	ND (0.0048)	ND (0.0047)	NA	NS	NS	NS	NS	NS	NS	NS	NS
Hexane	ND (0.0042)	0.0067	ND (0.0040)	NĂ	NS	NS	NS	NS	NS	NS	NS	NS
Isopropylbenzene (Cumene)	ND (0.0058)	0.077	ND (0.0056)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Methylene chloride	ND (0.041)	ND (0.040)	ND (0.040)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Naphthalene	ND (0.025)	ND (0.024)	ND (0.024)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
n-Propylbenzene	ND (0.0058)	ND (0.0057)	ND (0.0056)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Styrene	ND (0.0050)	ND (0.0050)	ND (0.0049)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Tetrachloroethene	ND (0.0080)	ND (0.0079)	ND (0.0078)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Toluene	ND (0.0044)	0.021	ND (0.0043)	0.403	NS	NS	NS	NS	NS	NS	NS	NS
Trichlorofluoromethane (Freon 11)	ND (0.0066)	ND (0.0065)	ND (0.0043)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Vinvl Chloride	ND (0.0030)	ND (0.0030)	ND (0.0029)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
m,p-Xylene	ND (0.0051)	ND (0.0050)	ND (0.0050)	NA	NS	NS	NS	NS	NS	NS	NS	NS
o-Xylene	ND (0.0051)	ND (0.0050)	ND (0.0050)	NA	NS	NS	NS	NS	NS	NS	NS	NS
Xylenes (total)	NA NA	ND (0.0050)	NA (0.0050)	0.085	NS	NS	NS	NS	NS	NS	NS	NS
Other VOCs	ND	0.027 6	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
Unier VOUS	NU	0.027 0	ND	INL	NO.	Na	INO	NO	NO	GN	NO	NS-

Probe Group	S	G-1	-					SG-2				
Probe Location ID	SG	-18	SG-2		S	5-2A				SG-2B		
Sample Depth (feet bgs)	9	9	5	5	5	5	5	5	5	5	5	5
EPA Analytical Method	TO-15	TO-15	8260B	8260B	8260B	TO-15	8260B	TO-15	TO-15	TO-15	TO-15	TO-15
Converte Data			·	1	1. January 1.	CONF	1	Service and the second second	1		· · · · · · · ·	1 p. 0.
Sample Date	10/7/14	4/14/15	2/13/08	10/12/09	4/26/10	4/26/10	10/13/10	6/27/11	10/3/11	11/6/12	4/18/13	10/14/13
TPHg	NS	NS	NA	ND (0.008)	1.38	2.4 J	0.322	ND (0.25)	ND (0.25)	ND (0.24)	1.1	ND (0.24)
1.2.4-Trichlorobenzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.037)	ND (0.008)	ND (0.036)	ND (0.036) UJ	ND (0.034)	ND (0.034)	ND (0.035)
1.2.4-Trimethylbenzene	NS	NS	ND (0.007)	ND (0.008)	0.160	0.013 J	ND (0.008)	ND (0.0059)	ND (0.0059)	ND (0.0057)	0.019	ND (0.0059)
1,3,5-Trimethylbenzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.020)	ND (0.008)	ND (0.0059)	ND (0.0059)	ND (0.0057)	0.0057	ND (0.0059)
1,3-Butadiene	NS	NS-	NA	NA	NA	NA	NA	ND (0.0027)	ND (0.0027)	ND (0.0026)	ND (0.0025)	ND (0.0026)
2,2,4-Trimethylpentane	NS	NS	NA	NA	NA	NA	NA	ND (0.0056)	ND (0.0056)	ND (0.0054)	0.021	ND (0.0056)
2-Butanone (MEK)	NS	NS	NA	NA	NA	ND (0.018)	NA	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)
4-Ethyltoluene	NS	NS	NA	NA	NA	0.020	NA	ND (0.0059)	ND (0.0059)	ND (0.0057)	0.014	ND (0.0059)
4-Isopropyltoluene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	NA	ND (0.008)	NA	NA	NA	NA	NA
Acetone	NS	NS	NA	NA	NA	0.073	NA	0.013 UN	0.028 UN	ND (0.028)	ND (0.027)	0.044
Benzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.0096)	ND (0.008)	ND (0.0039)	ND (0.0039)	ND (0.0037)	0.0069	ND (0.0038)
Bromodichloromethane	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.008)	ND (0.0081)	ND (0.0081)	ND (0.0078)	ND (0.0077)	ND (0.0080)
n-Butylbenzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	NA.	ND (0.008)	NA	NA	NA	NA	NA
sec-Butylbenzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	NA	ND (0.008)	NA	NA	NA	NA	NA
tert-Butylbenzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	NA	ND (0.008)	NA	NA	NA	NA	NA
Carbon disulfide	NS	NS	NA	NA	NA	ND (0.025)	NA	ND (0.015)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.015)
Carbon tétrachloride	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.008)	ND (0.0076)	ND (0.0076)	ND (0.0073)	ND (0.0072)	ND (0.0075)
Chloroform	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	0.017 J	ND (0.008)	ND (0.0059)	ND (0.0059)	ND (0.0057)	ND (0.0056)	ND (0.0058)
Cyclohexane	NS	NS	NA	NA	NA	NA	NA	ND (0.0042)	ND (0.0042)	ND (0.0040)	0.0068	ND (0.0041)
Dichlorodifluoromethane (Freon 12)	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.0099)	ND (0.008)	ND (0.0060)	ND (0.0060)	ND (0.0058)	ND (0.0057)	ND (0.0059)
Ethanol	NS	NS	NA	NA	NA	NA	NA	ND (0.0091)	ND (0.0091)	ND (0.0088)	0.082 J+	ND (0.0090)
Ethylbenzene	NS	NS	ND (0.007)	ND (0.008)	0.034	0.017 J	0.084	ND (0.0052)	ND (0.0052)	ND (0.0050)	0.0079	ND (0.0052)
Heptane	NS	NS	NA	NA	NA	NA	NA	ND (0.0050)	ND (0.0050)	ND (0.0048)	0.0082	ND (0.0049)
Hexane	NS	NS	NA	NA	NA	NA	NA	ND (0.0043)	ND (0.0043)	ND (0.0041)	0.0083	ND (0.0042)
Isopropylbenzene (Cumene)	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	NA	ND (0.008)	ND (0.0059)	ND (0.0059)	ND (0.0057)	ND (0.0056)	ND (0.0059)
Methylene chloride	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	0.012 J. UN	ND (0.008)	ND (0.0042)	ND (0.0042)	ND (0.040)	ND (0.040)	ND (0.042)
Naphthalene	NS	NS	ND (0.007)	ND (0.008)	0.159	ND (0.031)	ND (0.008)	ND (0.025)	ND (0.025) UJ	ND (0.024)	ND (0.024)	ND (0.025)
n-Propylbenzene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	NA	ND (0.008)	ND (0.0059)	ND (0.0059)	ND (0.0057)	ND (0.0056)	ND (0.0059)
Styrene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.0085)	ND (0.008)	ND (0.0052)	ND (0.0052)	ND (0.0050)	ND (0.0049)	ND (0.0051)
Tetrachloroethene	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.014)	ND (0.008)	ND (0.0082)	ND (0.0082)	ND (0.0079)	ND (0.0078)	ND (0.0081)
Toluene	NS	NS	0.015	ND (0.008)	0.009	0.040	0.041	ND (0.0046)	ND (0.0046)	ND (0.0044)	0.048	ND (0.0045)
Trichlorofluoromethane (Freon 11)	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.011)	ND (0.008)	ND (0.0068)	ND (0.0068)	ND (0.0065)	ND (0.0065)	ND (0.0067)
Vinyl Chloride	NS	NS	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.0031)	ND (0.0031)	ND (0.0030)	ND (0.0029)	ND (0.0030)
m,p-Xylene	NS	NS	NA	NA	NA	NA	NA	ND (0.0052)	ND (0.0052)	ND (0.0050)	0.032	ND (0.0052)
o-Xylene	NS	NS	NA	NA	NA	NA	NA	ND (0.0052)	ND (0.0052)	ND (0.0050)	0.012	ND (0.0052)
Xylenes (total)	NS	NS	ND (0.007)	ND (0.008)	0.199	0.15	0.208	NA	NA	NA	NA	NA
Other VOCs	NS	NS	ND	ND	ND	0.016 J 1	ND	ND	ND	ND	ND	ND

Probe Group	11.	SG-2					SC	3-2			
Probe Location ID		SG-2B					SG	-2C			-
Sample Depth (feet bgs)	5	5	5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
EPA Analytical Method	TO-15										
Sample Date	4/7/14	10/7/14	4/14/15	6/28/11	10/4/11	11/8/12	4/18/13	10/14/13	4/7/14	10/8/14	4/14/15
TPHq	ND (0.24)	0.32	ND (0.49)	7.2	0.57	ND (0.24)	ND (0.44)	ND (0.22)	ND (0.24)	ND (0.24)	ND (0.45)
1.2.4-Trichlorobenzene	ND (0.035)	ND (0.035)	ND (0.036)	ND (0.033)	ND (0.035)	ND (0.035)	ND (0.065)	ND (0.032)	ND (0.035)	ND (0.035)	ND (0.033)
1,2,4-Trimethylbenzene	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0055)	ND (0.0058)	ND (0.0058)	ND (0.011)	ND (0.0052)	ND (0.0059)	ND (0.0058)	ND (0.0054)
1.3,5-Trimethylbenzene	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0055)	ND (0.0058)	ND (0.0058)	ND (0.011)	ND (0.0052)	ND (0.0059)	ND (0.0058)	ND (0.0054)
1,3-Butadiene	ND (0.0026)	ND (0.0026)	ND (0.0026)	ND (0.0025)	ND (0.0026)	ND (0.0026)	ND (0.0048)	ND (0.0024)	ND (0.0026)	ND (0.0026)	ND (0.0024)
2,2,4-Trimethylpentane	ND (0.0055)	ND (0.0056)	ND (0.0056)	0.023	0.011	ND (0.0055)	ND (0.010)	ND (0.0050)	ND (0.0056)	ND (0.0055)	ND (0.0051)
2-Butanone (MEK)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.014)	ND (0.026)	ND (0.012)	ND (0.014)	ND (0.014)	ND (0.013)
4-Ethyltoluene	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0055)	ND (0.0058)	ND (0.0058)	ND (0.011)	ND (0.0052)	ND (0.0059)	ND (0.0058)	ND (0.0054)
4-Isopropyltoluene	NA										
Acetone	ND (0.028)	ND (0.028)	ND (0.028)	0.015 UN	0.046 UN	ND (0.028)	ND (0.052)	0.044	ND (0.028)	ND (0.028)	ND (0.026)
Benzene	ND (0.0038)	ND (0.0038)	ND (0.0038)	ND (0.0036)	ND (0.0038)	ND (0.0038)	ND (0.0070)	ND (0.0034)	ND (0.0038)	ND (0.0038)	ND (0.0035)
Bromodichloromethane	ND (0.0079)	ND (0.0080)	ND (0.0080)	ND (0.0075)	ND (0.0079)	ND (0.0079)	ND (0.015)	ND (0.0071)	ND (0.0080)	ND (0.0079)	ND (0.0074)
n-Butvlbenzene	NA	NA.	NA								
sec-Butylbenzene	NA										
tert-Butylbenzene	NA										
Carbon disulfide	ND (0.015)	ND (0.015)	ND (0.015)	0.12	0.064	ND (0.015)	ND (0.027)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.014)
Carbon tetrachloride	ND (0.0074)	ND (0.0075)	ND (0.0076)	ND (0.0070)	ND (0.0074)	ND (0.0074)	ND (0.014)	ND (0.0067)	ND (0.0075)	ND (0.0074)	ND (0.0069)
Chloroform	ND (0.0058)	ND (0.0058)	ND (0.0058)	ND (0.0055)	ND (0.0057)	ND (0.0058)	ND (0.011)	ND (0.0052)	0.017	ND (0.0058)	ND (0.0054)
Cyclohexane	ND (0.0041)	ND (0.0041)	ND (0.0041)	0.054	0.013	ND (0.0041)	ND (0.0075)	0.0040	ND (0.0041)	ND (0.0041)	ND (0.0038)
Dichlorodifluoromethane (Freon 12)	ND (0.0059)	ND (0.0059)	ND (0.0059)	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.011)	ND (0.0053)	ND (0.0059)	ND (0.0059)	ND (0.0054)
Ethanol	ND (0.0089)	ND (0.0090)	ND (0.0090)	ND (0.0084)	ND (0.0088)	ND (0.0089)	ND (0.016)	0.011	ND (0.0090)	ND (0.0089)	ND (0.0083)
Ethylbenzene	ND (0.0051)	ND (0.0052)	ND (0.0052)	ND (0.0049)	ND (0.0051)	ND (0.0051)	ND (0.0095)	ND (0.0046)	ND (0.0052)	ND (0.0051)	ND (0.0048)
Heptane	ND (0.0048)	ND (0.0049)	ND (0.0049)	ND (0.0046)	0.0052	ND (0.0048)	ND (0.0089)	ND (0.0044)	ND (0.0049)	ND (0.0048)	ND (0.0045)
Hexane	ND (0.0042)	ND (0.0042)	ND (0.0042)	0.062	0.011	ND (0.0042)	ND (0.0077)	0.0041	ND (0.0042)	ND (0.0042)	ND (0.0039)
Isopropylbenzene (Cumene)	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0055)	ND (0.0058)	ND (0.0058)	ND (0.011)	ND (0.0052)	ND (0.0059)	ND (0.0058)	ND (0.0054)
Methylene chloride	ND (0.041)	ND (0.042)	ND (0.042)	ND (0.0039)	ND (0.0041)	ND (0.041)	ND (0.076)	ND (0.037)	ND (0.042)	ND (0.041)	ND (0.038)
Naphthalene	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.023)	ND (0.025)	ND (0.025)	ND (0.046)	ND (0.022)	ND (0.025)	ND (0.025)	ND (0.023)
n-Propylbenzene	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0055)	ND (0.0058)	ND (0.0058)	ND (0.011)	ND (0.0052)	ND (0.0059)	ND (0.0058)	ND (0.0054)
Styrene	ND (0.0050)	ND (0.0051)	ND (0.0051)	ND (0.0048)	ND (0.0050)	ND (0.0050)	ND (0.0093)	ND (0.0045)	ND (0.0051)	ND (0.0050)	ND (0.0047)
Tetrachloroethene	ND (0.0080)	ND (0.0081)	ND (0.0081)	ND (0.0076)	0.0088	ND (0.0080)	ND (0.015)	ND (0.0072)	ND (0.0081)	ND (0.0080)	ND (0.0075)
Toluene	ND (0.0045)	ND (0.0045)	ND (0.0045)	ND (0.0042)	ND (0.0044)	ND (0.0045)	ND (0.0082)	ND (0.0040)	ND (0.0045)	ND (0.0045)	ND (0.0041)
Trichlorofluoromethane (Freon 11)	ND (0.0066)	ND (0.0067)	ND (0.0067)	ND (0.0063)	ND (0.0066)	ND (0.0066)	ND (0.012)	ND (0.0060)	ND (0.0067)	ND (0.0066)	ND (0.0062)
Vinyl Chloride	ND (0.0030)	ND (0.0030)	ND (0.0031)	ND (0.0029)	ND (0.0030)	ND (0.0030)	ND (0.0056)	ND (0.0027)	ND (0.0030)	ND (0.0030)	ND (0.0028)
m,p-Xylene	ND (0.0051)	ND (0.0052)	ND (0.0052)	ND (0.0049)	ND (0.0051)	ND (0.0051)	ND (0.0095)	ND (0.0046)	ND (0.0052)	ND (0.0051)	ND (0.0048)
o-Xviene	ND (0.0051)	ND (0.0052)	ND (0.0052)	ND (0.0049)	ND (0.0051)	ND (0.0051)	ND (0.0095)	ND (0.0046)	ND (0.0052)	ND (0.0051)	ND (0.0048)
Xylenes (total)	NA										
Other VOCs	ND										

Probe Group	§				SG-2				1	1	SG-3	
Probe Location ID		SG-2	x	1	SG-2A			SG-2B		SG-3	SG	-3A
Sample Depth (feet bgs)	15	15	15	14.5	14.5	14.5	14.5	14.5	14.5	5	5	5
EPA Analytical Method	8260B	8260B	TO-15	8260B	8260B	8260B	TO-15	TO-15	TO-15	8260B	8260B	8260B
Sample Date	2/13/08	DUP 2/13/08	CONF 2/13/08	10/12/09	4/26/10	10/13/10	6/27/11	10/4/11	11/8/12	2/13/08	10/12/09	4/26/10
TPHq	NA	NA	NA	ND (0.008)	2.22	NS	NS	NS	NS	NA	6.32	0.026
1,2,4-Trichlorobenzene	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
1.2.4-Trimethylbenzene	ND (0.007)	ND (0.007)	0.0051	ND (0.008)	0.010	NS	NS	NS	NS	ND (0.007)	ND (0.008)	0.026
1,3,5-Trimethylbenzene	ND (0.007)	ND (0.007)	ND (0.0024)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
1.3-Butadiene	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
2,2,4-Trimethylpentane	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
2-Butanone (MEK)	NA	NA	0.0055	NA	NA	NS	NS	NS	NS	NA.	NA	NA
4-Ethvitoluene	NA	NA	0.0040	NA	NA	NS	NS	NS	NS	NA.	NA	NA
4-Isopropyltoluene	ND (0.007)	ND (0.007)	NA	ND (0.008)	ND (0.008)	NS	NS.	NS	NS	ND (0.007)	ND (0:008)	ND (0.008
Acetone	NA	NA	0.032	NA	NA	NS	NS	NS	NS	NA	NA	NA
Benzene	ND (0.007)	ND (0.007)	0.030	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Bromodichloromethane	ND (0.007)	ND (0.007)	ND (0.002)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
n-Butylbenzene	ND (0.007)	ND (0.007)	NA	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
sec-Butylbenzene	ND (0.007)	ND (0.007)	NA	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
tert-Butylbenzene	ND (0.007)	ND (0.007)	NA	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Carbon disulfide	NA	NA	0.019	NA	NA	NS	NS	NS	NS	NA	NA	NA
Carbon tetrachloride	ND (0.007)	ND (0.007)	ND (0.0019)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0,007)	ND (0.008)	ND (0.008
Chloroform	ND (0.007)	ND (0.007)	ND (0.0015)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Cyclohexane	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
Dichlorodifluoromethane (Freon 12)	ND (0.007)	ND (0.007)	0.0038	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Ethanol	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
Ethylbenzene	ND (0.007)	ND (0.007)	0.0044	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Heptane	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
Hexane	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
Isopropylbenzene (Cumene)	ND (0.007)	ND (0.007)	NA	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Methylene chloride	ND (0.007)	ND (0.007)	0.0016	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Naphthalene	ND (0.007)	ND (0.007)	ND (0.0026)	ND (0.008)	0.234	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
n-Propylbenzene	ND (0.007)	ND (0.007)	NA	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Styrene	ND (0.007)	ND (0.007)	0.0035 JA	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Tetrachloroethene	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Toluene	0.037	0.020	0.041	ND (0.008)	ND (0.008)	NS	NS.	NS	NS	0.042	3.12	ND (0.008
Trichlorofluoromethane (Freon 11)	ND (0.007)	ND (0.007)	0.0027	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Vinyl Chloride	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
m,p-Xylene	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA	NA	NA
o-Xylene	NA	NA	NA	NA	NA	NS	NS	NS	NS	NA.	NA	NA
Xylenes (total)	ND (0.007)	ND (0.007)	0.024	ND (0.008)	0.101	NS	NS.	NS	NS	ND (0.007)	ND (0.008)	ND (0.008
Other VOCs	ND	ND	ND	ND	ND	NS	NS	NS	NS	ND	ND	ND

Probe Group						S	G-3					
Probe Location ID		SG-3A	-	1		SC	G-3A		-	SG-3	SG	i-3A
Sample Depth (feet bgs)	5	5	5	5	5	5	5	5	5	15	14.5	14.5
EPA Analytical Method	8260B	TO-15	TQ-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	8260B	8260B	8260B
Sample Date	10/13/10	6/28/11	10/3/11	11/7/12	4/19/13	10/17/13	4/9/14	10/9/14	4/15/15	2/13/08	10/12/09	4/26/10
TPHg	0.152	ND (0.24)	ND (0.24)	2.2	3.5	ND (0.23)	ND (0.24)	ND (0.24)	ND (0.46)	NA	ND (0.008)	0.325
1,2,4-Trichlorobenzene	ND (0.008)	ND (0.035)	ND (0.034) UJ	ND (0.033)	ND (0.034)	ND (0.033)	ND (0.035)	ND (0.035)	ND (0.034)	ND (0.007)	ND (0.008)	ND (0.00
1,2,4-Trimethylbenzene	0.017	ND (0.0058)	ND (0.0057)	0.080	0.14	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.0056)	ND (0.007)	ND (0.008)	ND (0.00
1,3,5-Trimethylbenzene	ND (0.008)	ND (0.0058)	ND (0.0057)	0.028	0.045	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.0056)	ND (0.007)	ND (0.008)	ND (0.00
1,3-Butadiene	NA	ND (0.0026)	ND (0.0026)	ND (0.0025)	ND (0.0026)	ND (0.0025)	ND (0.0026)	ND (0.0026)	ND (0.0025)	NA	NA	NA
2,2,4-Trimethylpentane	NA	ND (0.0056)	ND (0.0054)	ND (0.0052)	0.053	ND (0.0052)	ND (0.0055)	ND (0.0056)	ND (0.0053)	NA	NA	NA
2-Butanone (MEK)	NA	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.014)	ND (0.013)	NA	NA	NA
4-Ethvitoluene	NA	ND (0.0058)	ND (0.0057)	0.052	0.15	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.0056)	NA	NA	NA
4-Isopropyltoluene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.007)	ND (0.008)	ND (0.00
Acetone	NA	ND (0.011)	0.020 UN	ND (0.027)	ND (0.028)	ND (0.027)	ND (0.028)	ND (0.028)	ND (0.027)	NA	NA	NA
Benzene	ND (0.008)	ND (0.0038)	ND (0.0037)	ND (0.0036)	0.012	ND (0.0036)	ND (0.0038)	ND (0.0038)	ND (0.0036)	ND (0.007)	ND (0.008)	ND (0.00
Bromodichloromethane	ND (0.008)	ND (0.0080)	ND (0.0078)	ND (0.0075)	ND (0.0078)	ND (0.0075)	ND (0.0079)	ND (0.0080)	ND (0.0076)	ND (0.007)	ND (0.008)	ND (0.00
n-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.007)	ND (0.008)	ND (0.00
sec-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.007)	ND (0.008)	ND (0.00
tert-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.007)	ND (0.008)	ND (0.00
Carbon disulfide	NA	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.015)	ND (0.015)	ND (0.014)	NA	NA	NA
Carbon tetrachloride	ND (0.008)	ND (0.0075)	ND (0.0073)	ND (0.0070)	ND (0.0073)	ND (0.0070)	ND (0.0074)	ND (0.0075)	ND (0.0071)	ND (0.007)	ND (0.008)	ND (0.00
Chloroform	ND (0.008)	ND (0.0058)	ND (0.0057)	ND (0.0055)	ND (0.0057)	ND (0.0055)	ND (0.0058)	0.010	ND (0.0055)	ND (0.007)	ND (0.008)	ND (0.00
Cyclohexane	NA	ND (0.0041)	ND (0.0040)	ND (0.0038)	0.018	ND (0.0038)	ND (0.0041)	ND (0.0041)	ND (0.0039)	NA	NA	NA
Dichlorodifluoromethane (Freon 12)	ND (0.008)	ND (0.0059)	ND (0.0058)	ND (0.0055)	ND (0.0057)	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.0056)	ND (0.007)	ND (0.008)	ND (0.00
Ethanol	NA	ND (0.0090)	ND (0.0088)	ND (0.0084)	0.10	ND (0.0084)	ND (0.0089)	ND (0.0090)	0.013	NA	NA	NA
Ethylbenzene	0.058	ND (0.0052)	ND (0.0050)	0.017	0.076	ND (0.0049)	ND (0.0051)	ND (0.0052)	ND (0.0049)	ND (0.007)	ND (0.008)	ND (0.00
Heptane	NA	ND (0.0049)	ND (0.0048)	ND (0.0046)	0.025	ND (0.0046)	ND (0.0048)	ND (0.0049)	ND (0.0046)	NA	NA	NA
Hexane	NA	ND (0.0042)	ND (0.0041)	ND (0.0039)	0.014	ND (0.0039)	ND (0.0042)	ND (0.0042)	ND (0.0040)	NA	NA	NA
Isopropylbenzene (Cumene)	ND (0.008)	ND (0.0058)	ND (0.0057)	ND (0.0055)	ND (0.0057)	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.0056)	ND (0.007)	ND (0.008)	ND (0.00
Methylene chloride	ND (0.008)	ND (0.0041)	ND (0.0040)	ND (0.039)	ND (0.040)	ND (0.039)	ND (0.041)	ND (0.042)	ND (0.039)	ND (0.007)	ND (0.008)	ND (0.00
Naphthalene	ND (0.008)	ND (0.025)	ND (0.024) UJ	0.032	ND (0.024)	ND (0.023)	ND (0.025)	ND (0.025)	ND (0.024)	ND (0.007)	ND (0.008)	0.061
n-Propylbenzene	ND (0.008)	ND (0.0058)	ND (0.0057)	0.0060	0.021	ND (0.0055)	ND (0.0058)	ND (0.0059)	ND (0.0056)	ND (0.007)	ND (0.008)	ND (0.00
Styrene	ND (0.008)	ND (0.0051)	ND (0.0050)	ND (0.0048)	ND (0.0049)	ND (0.0048)	ND (0.0050)	ND (0.0051)	ND (0.0048)	ND (0.007)	ND (0.008)	ND (0.00
Tetrachloroethene	ND (0.008)	ND (0.0081)	ND (0.0079)	ND (0.0076)	ND (0.0079)	ND (0.0076)	ND (0.0080)	ND (0.0081)	ND (0.0077)	ND (0.007)	ND (0.008)	ND (0.00
Toluene	0.077	ND (0.0045)	ND (0.0044)	0.054	0.19	ND (0.0042)	ND (0.0044)	ND (0.0045)	ND (0.0043)	0.083	ND (0.008)	ND (0.00
Trichlorofluoromethane (Freon 11)	ND (0.008)	ND (0.0067)	ND (0.0065)	ND (0.0063)	ND (0.0065)	ND (0.0042)	ND (0.0066)	ND (0.0043)	ND (0.0064)	ND (0.007)	ND (0.008)	ND (0.00
Vinyl Chloride	ND (0.008)	ND (0.0030)	ND (0.0030)	ND (0.0003)	ND (0.0083)	ND (0.0003)	ND (0.0030)	ND (0.0087)	ND (0.0029)	ND (0.007)	ND (0.008)	ND (0.00
m,p-Xylene	ND (0.008)	ND (0.0052)	ND (0.0050)	0.12	0.38	ND (0.0029)	ND (0.0051)	ND (0.0050)	ND (0.0029)	NA	NA NA	ND (0.00
o-Xylene	NA	ND (0.0052)	ND (0.0050)	0.061	0.38	ND (0.0049)	ND (0.0051)	ND (0.0052)	ND (0.0049)	NA	NA	NA
Xylenes (total)	ND (0.008)	ND (0.0052) NA	ND (0.0050)	NA	NA	ND (0.0049) NA	ND (0.0051) NA	ND (0.0052) NA	ND (0.0049) NA	ND (0.007)	ND (0.008)	ND (0.00
Other VOCs				ND				ND				
Other VOUs	ND	ND.	ND	ND	0.019 5	0.027	0.012 7	ND	ND	ND	ND	ND

Probe Group					SG-3						G-4
Probe Location ID					SG-3A					S	3-4
Sample Depth (feet bgs)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	5	5
EPA Analytical Method	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	8260B	TO-15
Sample Date	10/13/10	6/28/11	10/3/11	11/7/12	4/19/13	10/17/13	4/9/14	10/9/14	4/15/15	2/12/08	CONF 2/12/08
TPHg	3.92	ND (0.24)	ND (0.24)	ND (0.26)	5,1	ND (0.23)	ND (0.23)	ND (0.25)	ND (0.46)	NA	NA
1,2,4-Trichlorobenzene	ND (0.008)	ND (0.035)	ND (0.034) UJ	ND (0.038)	ND (0.14)	ND (0.033)	ND (0.034)	ND (0.036)	ND (0.034)	ND (0.007)	ND (0.007)
1,2,4-Trimethylbenzene	ND (0.008)	ND (0.0058)	ND (0.0057)	ND (0.0063)	0.17	ND (0.0055)	ND (0.0056)	ND (0.0060)	ND (0.0056)	ND (0.018)	0.033
1,3,5-Trimethylbenzene	ND (0.008)	ND (0.0058)	ND (0.0057)	ND (0.0063)	0.054	ND (0.0055)	ND (0.0056)	ND (0.0060)	ND (0.0056)	ND (0.018)	0.025
1,3-Butadiene	NA	ND (0.0026)	ND (0.0026)	ND (0.0028)	ND (0.010)	ND (0.0025)	ND (0.0025)	ND (0.0027)	ND (0.0025)	NA	NA
2,2,4-Trimethylpentane	NA	ND (0.0056)	ND (0.0054)	ND (0.0060)	0.10	ND (0.0052)	ND (0.0053)	ND (0.0057)	ND (0.0053)	NA	NA
2-Butanone (MEK)	NA	ND (0.014)	ND (0.014)	ND (0.015)	ND (0.056)	ND (0.013)	ND (0.013)	ND (0.014)	ND (0.013)	NA	ND (0.0058
4-Ethyltoluene	NA	ND (0.0058)	ND (0.0057)	ND (0.0063)	0.17	ND (0.0055)	ND (0.0056)	ND (0.0060)	ND (0.0056)	NA	0.046
4-Isopropyltoluene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	NA
Acetone	NA	ND (0.011)	0.020 UN	ND (0.031)	ND (0.11)	ND (0.027)	ND (0.027)	ND (0.029)	ND (0.027)	NA	0.026
Benzene	ND (0.008)	ND (0.0038)	ND (0.0037)	ND (0.0041)	0.024	ND (0.0036)	ND (0.0036)	ND (0.0039)	ND (0.0036)	0.571	0.0093
Bromodichloromethane	ND (0.008)	ND (0.0080)	ND (0.0078)	ND (0.0086)	ND (0.032)	ND (0.0075)	ND (0.0076)	0.014	0.011	ND (0.018)	ND (0.004)
n-Butylbenzene	0.392	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	NA
sec-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	NA
tert-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	NA
Carbon disulfide	NA	ND (0.015)	ND (0.014)	ND (0.016)	ND (0.060)	ND (0.014)	ND (0.014)	ND (0.015)	ND (0.014)	NA	0.0084
Carbon tetrachloride	ND (0.008)	ND (0.0075)	ND (0.0073)	ND (0.0081)	ND (0.030)	ND (0.0071)	ND (0.0072)	ND (0.0076)	ND (0.0071)	ND (0.018)	ND (0.0038
Chloroform	0.041	0.035	0.051	0.037	ND (0.023)	0.020	0.011	0.044	0.026	ND (0.018)	ND (0.003)
Cyclohexane	NA	ND (0.0041)	ND (0.0040)	ND (0.0044)	0.026	ND (0.0039)	ND (0.0039)	ND (0.0042)	ND (0.0039)	NA	NA
Dichlorodifluoromethane (Freon 12)	ND (0.008)	ND (0.0059)	ND (0.0058)	ND (0.0064)	ND (0.024)	ND (0.0056)	ND (0.0056)	ND (0.0060)	ND (0.0056)	ND (0.018)	ND (0.003)
Ethanol	NA	ND (0.0090)	ND (0.0088)	ND (0.0097)	0.26	ND (0.0085)	ND (0.0086)	ND (0.0092)	ND (0.0086)	NA	NA
Ethylbenzene	ND (0.008)	ND (0.0052)	ND (0.0050)	ND (0.0056)	0.10	ND (0.0049)	ND (0.0049)	ND (0.0053)	ND (0.0049)	0.525	0.015
Heptane	NA	ND (0.0049)	ND (0.0048)	ND (0.0053)	0.048	ND (0.0046)	ND (0.0047)	ND (0.0050)	ND (0.0046)	NA	NA
Hexane	NA	ND (0.0042)	ND (0.0041)	ND (0.0045)	0.029	ND (0.0040)	ND (0.0040)	ND (0.0043)	ND (0.0040)	NA	NA
Isopropylbenzene (Cumene)	ND (0.008)	ND (0.0058)	ND (0.0057)	ND (0.0063)	ND (0.023)	ND (0.0055)	ND (0.0056)	ND (0.0060)	ND (0.0056)	ND (0.018)	NA
Methylene chloride	ND (0.008)	0.0042 UN	ND (0.0040)	ND (0.045)	ND (0.17)	ND (0.039)	ND (0.040)	ND (0.042)	ND (0.039)	ND (0.018)	ND (0.002)
Naphthalene	0.040	ND (0.025)	ND (0.024) UJ	ND (0.027)	ND (0.10)	ND (0.024)	ND (0.024)	ND (0.025)	ND (0.024)	ND (0.018)	ND (0.0052
n-Propylbenzene	ND (0.008)	ND (0.0058)	ND (0.0057)	ND (0.0063)	0.027	ND (0.0055)	ND (0.0056)	ND (0.0060)	ND (0.0056)	ND (0.018)	NA
Styrene	ND (0.008)	ND (0.0051)	ND (0.0050)	ND (0.0055)	ND (0.020)	ND (0.0048)	ND (0.0048)	ND (0.0052)	ND (0.0048)	ND (0.018)	0.03 JA
Tetrachloroethene	ND (0.008)	ND (0.0081)	ND (0.0079)	ND (0.0088)	ND (0.032)	ND (0.0076)	ND (0.0077)	ND (0.0082)	ND (0.0077)	ND (0.007)	ND (0.007)
Toluene	0.055	ND (0.0045)	ND (0.0044)	ND (0.0049)	0.33	ND (0.0042)	ND (0.0043)	ND (0.0046)	ND (0.0043)	9.45	0.096
Trichlorofluoromethane (Freon 11)	ND (0.008)	ND (0.0067)	ND (0.0065)	ND (0.0072)	ND (0.027)	ND (0.0063)	ND (0.0064)	ND (0.0068)	ND (0.0064)	ND (0.018)	ND (0.0044
Vinyl Chloride	ND (0.008)	ND (0.0030)	ND (0.0030)	ND (0.0033)	ND (0.012)	ND (0.0029)	ND (0.0029)	ND (0.0031)	ND (0.0029)	ND (0.007)	ND (0.007)
m,p-Xylene	NA	ND (0.0052)	ND (0.0050)	ND (0.0056)	0.52	ND (0.0049)	ND (0.0050)	ND (0.0053)	ND (0.0049)	NA	NA
o-Xylene	NA	ND (0.0052)	ND (0.0050)	ND (0.0056)	0.17	ND (0.0049)	ND (0.0050)	ND (0.0053)	ND (0.0049)	NA	NA
Xylenes (total)	0.108	NA	NA	NA	NA	NA	NA	NA	NA	3.16	0.430
Other VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Probe Group		SG-4											
Probe Location ID	1.						SG-4A			2			
Sample Depth (feet bgs)	5	5	5	5	5	5	5	5	5	5	5	5	
EPA Analytical Method	8260B	8260B	TO-15	8260B	TO-15	TO-15							
Sample Date	10/12/09	4/26/10	CONF 4/26/10	10/13/10	6/27/11	10/4/11	11/7/12	4/18/13	10/15/13	4/8/14	10/8/14	4/14/15	
TPHg	15.4	29.3	170	13,3	ND (0,25)	ND (0.25)	ND (0.25)	1.9	ND (0.22)	ND (0.24)	ND (0.26)	ND (0.45)	
1,2,4-Trichlorobenzene	ND (0.008)	ND (0.008)	ND (0.76)	ND (0.008)	ND (0.036)	ND (0.037)	ND (0.037)	ND (0.073)	ND (0.032)	ND (0.035)	ND (0.037)	ND (0.033)	
1,2,4-Trimethylbenzene	0.147	1.54	ND (0.26)	0.486	ND (0.0059)	ND (0.0061)	ND (0.0061)	0.034	ND (0.0053)	ND (0.0058)	ND (0.0061)	ND (0.0054	
1,3,5-Trimethylbenzene	0.067	0.162	ND (0.40)	0.230	ND (0.0059)	ND (0.0061)	ND (0.0061)	ND (0.012)	ND (0.0053)	ND (0.0058)	ND (0.0061)	ND (0.0054	
1,3-Butadiene	NA	NA	NA	NA	ND (0.0027)	ND (0.0027)	ND (0.0027)	ND (0.0055)	ND (0.0024)	ND (0.0026)	ND (0.0028)	ND (0.0024	
2,2,4-Trimethylpentane	NA	NA	NA	NA	ND (0.0056)	ND (0.0058)	ND (0.0058)	0.017	ND (0.0051)	ND (0.0056)	ND (0.0058)	ND (0.0052	
2-Butanone (MEK)	NA	NA	ND (0.36)	NA	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.029)	ND (0.013)	ND (0.014)	0.020	ND (0.013)	
4-Ethyltoluene	NA	NA	ND (0.20)	NA	ND (0.0059)	ND (0.0061)	ND (0.0061)	0.025	ND (0.0053)	ND (0.0058)	ND (0.0061)	ND (0.0054	
4-Isopropyltoluene	0.078	ND (0.008)	NA	ND (0.008)	NA	NA							
Acetone	NA	NA	ND (0.39)	NA	0.014 UN	0.021 UN	ND (0.029)	0.059	0.026	ND (0.028)	ND (0.030)	ND (0.026)	
Benzene	ND (0.008)	ND (0.008)	ND (0.20)	ND (0.008)	ND (0.0039)	ND (0.0040)	ND (0.0039)	ND (0.0079)	ND (0.0035)	ND (0.0038)	ND (0.0040)	ND (0.0035	
Bromodichloromethane	ND (0.008)	ND (0.008)	ND (0.27)	ND (0.008)	ND (0.0081)	ND (0.0083)	ND (0.0083)	ND (0.016)	ND (0.0073)	ND (0.0080)	ND (0.0084)	ND (0.0074	
n-Butylbenzene	0.06	0.065	NA	ND (0.008)	NA	NA							
sec-Butylbenzene	0.145	ND (0.008)	NA	ND (0.008)	NA	NA							
tert-Butylbenzene	ND (0.008)	ND (0.008)	NA	ND (0.008)	NA	NA							
Carbon disulfide	NA	NA	ND (0.51)	NA	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.031)	ND (0.014)	ND (0.015)	ND (0.016)	ND (0.014)	
Carbon tetrachloride	ND (0.008)	ND (0.008)	ND (0.26)	ND (0.008)	ND (0.0076)	ND (0.0078)	ND (0.0078)	ND (0.016)	ND (0.0068)	ND (0.0075)	ND (0.0079)	ND (0.0070	
Chloroform	ND (0.008)	ND (0.008)	ND (0.20)	ND (0.008)	ND (0.0059)	ND (0.0060)	ND (0.0060)	ND (0.012)	ND (0.0053)	ND (0.0058)	ND (0.0061)	ND (0.0054	
Cyclohexane	NA	NA	NA	NA	ND (0.0042)	ND (0.0043)	ND (0.0042)	ND (0.0085)	ND (0.0037)	ND (0.0041)	ND (0.0043)	ND (0.0038	
Dichlorodifluoromethane (Freon 12)	ND (0.008)	ND (0.008)	ND (0.20)	ND (0.008)	ND (0.0060)	ND (0.0061)	ND (0.0061)	ND (0.012)	ND (0.0054)	ND (0.0059)	ND (0.0062)	ND (0.0055	
Ethanol	NA	NA	NA	NA	ND (0.0091)	ND (0.0093)	ND (0.0093)	0.12	0.012	ND (0.0090)	0.013	0.0088	
Ethylbenzene	0.671	1.84	ND (0.18)	1.25	ND (0.0052)	ND (0.0054)	ND (0.0054)	ND (0.011)	ND (0.0047)	ND (0.0052)	ND (0.0054)	ND (0.0048	
Heptane	NA	NA	NA	NA	ND (0.0050)	ND (0.0051)	ND (0.0051)	ND (0.010)	ND (0.0044)	ND (0.0049)	ND (0.0051)	ND (0.0045	
Hexane	NA	NA	NA	NA	ND (0.0043)	ND (0.0044)	ND (0.0044)	ND (0.0087)	ND (0.0038)	ND (0.0042)	0.0056	ND (0.0039	
Isopropylbenzene (Cumene)	0.03	0.043	NA	ND (0.008)	ND (0.0059)	ND (0.0061)	ND (0.0061)	ND (0.012)	ND (0.0053)	ND (0.0058)	ND (0.0061)	ND (0.0054	
Methylene chloride	ND (0.008)	ND (0.008)	ND (0.14)	ND (0.008)	0.0043 UN	ND (0.0043)	ND (0.043)	ND (0.086)	ND (0.038)	ND (0.041)	ND (0.043)	ND (0.038)	
Naphthalene	ND (0.008)	0.452	ND (0.64)	0.487	ND (0.025)	ND (0.026)	ND (0.026)	ND (0.052)	ND (0.023)	ND (0.025)	ND (0.026)	ND (0.023)	
n-Propylbenzene	ND (0.008)	ND (0.008)	NA	ND (0.008)	ND (0.0059)	ND (0.0061)	ND (0.0061)	ND (0.012)	ND (0.0053)	ND (0.0058)	ND (0.0061)	ND (0.0054	
Styrene	ND (0.008)	ND (0.008)	ND (0.17)	ND (0.008)	ND (0.0052)	ND (0.0053)	ND (0.0053)	ND (0.010)	ND (0.0046)	ND (0.0051)	ND (0.0053)	ND (0.0047	
Tetrachloroethene	ND (0.008)	ND (0.008)	ND (0.28)	ND (0.008)	ND (0.0082)	ND (0.0084)	ND (0.0084)	ND (0.017)	ND (0.0074)	ND (0.0081)	ND (0.0085)	ND (0.0075	
Toluene	0.295	1.71	0.29 J	0.567	ND (0.0046)	ND (0.0047)	ND (0.0046)	0.024	ND (0.0041)	ND (0.0045)	0.0080	ND (0.0042	
Trichlorofluoromethane (Freon 11)	ND (0.008)	ND (0.008)	ND (0.23)	ND (0.008)	ND (0.0068)	ND (0.0070)	ND (0.0069)	ND (0.014)	ND (0.0061)	ND (0.0067)	ND (0.0070)	ND (0.0062	
Vinyl Chloride	ND (0.008)	ND (0.008)	ND (0.21)	ND (0.008)	ND (0.0031)	ND (0.0032)	ND (0.0032)	ND (0.0063)	ND (0.0028)	ND (0.0030)	ND (0.0032)	ND (0.0028	
m,p-Xylene	NA	NA	NA	NA	ND (0.0052)	ND (0.0054)	ND (0.0054)	0.026	ND (0.0047)	ND (0.0052)	ND (0.0054)	ND (0.0048	
o-Xylene	NA	NA	NA	NA	ND (0.0052)	ND (0.0054)	ND (0.0054)	0.013	ND (0.0047)	ND (0.0052)	ND (0.0054)	ND (0.0048	
Xylenes (total)	1.05	9.50	0.49	3.04	NA	NA							
Other VOCs	ND	ND	0.22 J ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Probe Group	SG-4											
Probe Location ID	S	3-4					S	G-4A		r		
Sample Depth (feet bgs)	15	15	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
EPA Analytical Method	8260B	8260B	8260B	TO-15	8260B	8260B	TO-15	8260B	8260B	TO-15	TO-15	TO-15
Sample Date		DUP	1	CONF	the second second second	DUP	CONF		DUP	CONF	1	DUP
Sample Date	2/12/08	2/12/08	10/12/09	10/12/09	4/26/10	4/26/10	4/26/10	10/13/10	10/13/10	10/13/10	6/27/11	6/27/11
TPHa	NA	NA	6,170	6,200	1,910	1,840	170	7,430	7,160	7,100	11,000	12,000
1,2,4-Trichlorobenzene	ND (0.007)	ND (0.007)	ND (0.08)	ND (9.4)	ND (0.02)	ND (0.4)	ND (0.39)	ND (0.4)	ND (0.4)	ND (13)	ND (12)	ND (12)
1,2,4-Trimethylbenzene	1.13	1.23	114	110	31.3	32.4	0.79	230	216	82	150	160
1,3,5-Trimethylbenzene	1.24	1.18	157	70	1.61	1.50	0.67	145	149	76	84	89
1,3-Butadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.89)	ND (0.89
2,2,4-Trimethylpentane	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	ND (1.9)	ND (1.9)
2-Butanone (MEK)	NA	NA	NA	ND (3.0)	NA	NA	ND (0,18)	NA	NA	ND (6,0)	ND (4.8)	ND (4.8)
4-Ethvitoluene	NA	NA	NA	140	NA	NA.	1.1	NA	NA	150	150	160
4-Isopropyltoluene	ND (0.07)	ND (0.07)	ND (0.08)	NA	0.941	ND (0.4)	NA	3.79	4.02	NA	NA	NA
Acetone	NA	NA	NA	ND (3.0)	NA	NA	ND (0.20)	NA	NA	ND (6.4)	ND (3.8)	ND (3.8)
Benzene	41.5	43.7	26.8	20	35.1	3.97	0.25	28.7	30.1	21	18	19
Bromodichloromethane	ND (0.07)	ND (0.07)	ND (0.08)	ND (3.4)	ND (0.02)	ND (0.4)	ND (0.14)	ND (0.4)	ND (0.4)	ND (4.5)	ND (2.7)	ND (2.7)
n-Butylbenzene	ND (0.07)	ND (0.07)	ND (0.08)	NA	0.925	1.09	NA	8.04	7.81	NA	NA	NA.
sec-Butylbenzene	ND (0.07)	ND (0.07)	ND (0.08)	NA	ND (0.02)	ND (0.4)	NA	183	172	NA	NA	NA
tert-Butylbenzene	ND (0.07)	ND (0.07)	5.66	NA	ND (0.02)	ND (0.4)	NA	ND (0.4)	ND (0.4)	NA	NA	NA
Carbon disulfide	NA	NA	NA	ND (3.1)	NA	NA	ND (0.26)	NA	NA	ND (8.4)	ND (1.2)	ND (1.2)
Carbon tetrachloride	ND (0.07)	ND (0.07)	ND (0.08)	ND (3.2)	ND (0.02)	ND (0.4)	ND (0.13)	ND (0,4)	ND (0.4)	ND (4.2)	ND (2.5)	ND (2.5)
Chloroform	ND (0.07)	ND (0.07)	ND (0.08)	ND (2.5)	ND (0.02)	ND (0.4)	ND (0.10)	ND (0.4)	ND (0.4)	ND (3.3)	ND (2.0)	ND (2.0)
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	16	16
Dichlorodifluoromethane (Freon 12)	ND (0.07)	ND (0.07)	ND (0.08)	ND (3.7)	ND (0.02)	ND (0.4)	ND (0.10)	ND (0.4)	ND (0.4)	ND (3.3)	ND (2.0)	ND (2.0)
Ethanol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (3.0)	ND (3.0)
Ethylbenzene	26.5	27.3	283	180	90.5	4.26	1.6	308	309	170	170	180
Heptane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170	180
Hexane	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	40	40
Isopropylbenzene (Cumene)	1.65	0.824	25.8	NA	1.05	ND (0.4)	NA	26.4	28.6	NA	15	15
Methylene chloride	ND (0.07)	ND (0.07)	ND (0.08)	ND (1.8)	ND (0.02)	ND (0.4)	0.0079 J. UN	ND (0.4)	ND (0.4)	ND (2.3)	ND (1.4)	ND (1.4)
Naphthalene	ND (0.07)	ND (0.07)	85.8	ND (7.9)	9.30	0.886	ND (0.33)	7.70	12.6	ND (11)	75	78
n-Propylbenzene	ND (0.07)	ND (0.07)	ND (0.08)	NA	ND (0.02)	ND (0.4)	NA	20.6	22.1	NA	14	15
Styrene	ND (0.07)	ND (0.07)	ND (0.08)	63	ND (0.02)	ND (0.4)	0.51	ND (0.4)	ND (0.4)	66	81	84
Tetrachloroethene	ND (0.007)	ND (0.007)	ND (0.08)	ND (3.4)	ND (0.02)	ND (0.4)	ND (0.14)	ND (0.4)	ND (0.4)	ND (4.6)	ND (2.7)	ND (2.7)
Toluene	445	501	1,320	810	280	217	7.5	1,250	1,300	570	610	650
Trichlorofluoromethane (Freon 11)	ND (0.07)	ND (0.07)	ND (0.08)	ND (2.8)	ND (0.02)	ND (0.4)	ND (0.12)	ND (0.4)	ND (0.4)	ND (3.8)	ND (2.3)	ND (2.3)
Vinyl Chloride	ND (0.007)	ND (0.007)	ND (0.08)	ND (2.6)	ND (0.02)	ND (0,4)	ND (0.11)	ND (0.4)	ND (0.4)	ND (3.5)	ND (1.0)	ND (1.0)
m,p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	1.200	1,300
o-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	350	370
Xylenes (total)	130	145	2,170	1,800	489	454	15	1,580	1,660	1,500	NA	NA
Other VOCs	ND	ND	ND	ND	ND	ND	0.10 J ²	ND	ND	ND	ND	ND

Probe Group						SG						
Probe Location ID						SG	4A					
Sample Depth (feet bgs)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
EPA Analytical Method	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	10/4/11	11/7/12	4/18/13	DUP 4/18/13	10/15/13	DUP 10/15/13	4/8/14	DUP 4/8/14	10/8/14	DUP 10/8/14	4/14/15	DUP 4/14/15
TPHq	11.000	10,000	7.200	8,400	11.000	19.000	9,200	8,200	11.000	11.000	8,400	7,200
1,2,4-Trichlorobenzene	ND (18)	ND (75)	ND (18)	ND (12)	ND (18)	ND (18)	ND (18)	ND (9.0)	ND (64)	ND (61)	ND (34) UJ	ND (43) U
1.2.4-Trimethylbenzene	200	96	77	110	120	230	140	120	250	300	150	93
1,3,5-Trimethylbenzene	120	65	51	68	78	130	82	68	160	180	93	70
1.3-Butadiene	ND (1.4) UJ	ND (5.6)	ND (1.3)	ND (0.89)	ND (1.3)	ND (1.3)	ND (1.3)	ND (0.67)	ND (4.8)	ND (4.6)	ND (2.6)	ND (3.2)
2,2,4-Trimethylpentane	ND (2.9)	ND (3.0)	ND (1.3)	ND (0.89)	ND (1.3)	ND (1.3)	ND (1.3)	ND (0.07)	ND (4.8)	ND (9.6)	ND (2.0) ND (5.4)	ND (6.8)
2-Butanone (MEK)	ND (2.9) ND (7.4)	ND (12) ND (30)	ND (2.0) ND (7.1)	ND (1.9) ND (4.7)	ND (2.0)	ND (2.8) ND (7.0)	ND (2.0)	ND (1.4) ND (3.6)	ND (10)	ND (9.0) ND (24)	ND (3.4) ND (14)	ND (0.0) ND (17)
4-Ethyltoluene	200	110	91	120	140	250	140	120	250	300	180	120
	NA 200	NA	NA	NA.	NA NA	NA	NA NA	NA	250 NA	NA	NA	NA
4-Isopropyltoluene			1.11.4			1.45.5						
Acetone	ND (5.9)	ND (24)	ND (5.7)	ND (3.8)	ND (5.6)	ND (5.6)	ND (5.8)	ND (2.9)	ND (20)	ND (20)	ND (28)	ND (35)
Benzene	25	19	21	21	18	21	12	12	23	27	23	24
Bromodichloromethane	ND (4.2)	ND (17)	ND (4.0)	ND (2.7)	ND (4.0)	ND (4.0)	ND (4.1)	ND (2.0)	ND (14)	ND (14)	ND (7.8)	ND (9.8)
n-Butylbenzene	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA.	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon disulfide	ND (1.9)	ND (7.8)	ND (1.9)	ND (1.2)	ND (1.8)	ND (1.8)	ND (1.9)	ND (0.94)	ND (6.7)	ND (6.4)	ND (14)	ND (18)
Carbon tetrachloride	ND (3.9)	ND (16)	ND (3.8)	ND (2.5)	ND (3.7)	ND (3,7)	ND (3.8)	ND (1.9)	ND (14)	ND (13)	ND (7.3)	ND (9.2)
Chloroform	ND (3.0)	ND (12)	ND (3.0)	ND (2.0)	ND (2.9)	ND (2.9)	ND (3.0)	ND (1.5)	ND (10)	ND (10)	ND (5.7)	ND (7.1)
Cyclohexane	23	14	13	15	16	18	10	11	19	20	19	21
Dichlorodifluoromethane (Freon 12)	ND (3.1)	ND (12)	ND (3.0)	ND (2.0)	ND (2.9)	ND (2.9)	ND (3.0)	ND (1.5)	ND (11)	ND (10)	ND (5.7)	ND (7.2)
Ethanol	ND (4.7)	ND (19)	ND (4.6)	ND (3.0)	ND (4.4)	ND (4.5)	ND (4.6)	ND (2.3)	ND (16)	ND (16)	ND (8.7)	ND (11)
Ethylbenzene	250	160	160	180	210	340	170	150	300	340	250	230
Heptane	250	170	160	180	190	240	130	130	240	270	230	240
Hexane	54	31	28	33	27	31	17	19	43	51	42	42
Isopropylbenzene (Cumene)	21	15	12	14	16	29	15	13	25	29	20	16
Methylene chloride	ND (2.2)	ND (8.8)	ND (2.1)	ND (1.4)	ND (2.0)	ND (2.1)	ND (2.1)	ND (1.0)	ND (7.5)	ND (7.2)	ND (40)	ND (51)
Naphthalene	72	ND (53) J-	18	31	29	65	40	45	81	93	ND (24)	ND (31)
n-Propylbenzene	20	ND (12)	9.4	12	14	25	13	11	23	26	17	12
Styrene	100	52	64	76	88	150	81	72	140	160	100	62
Tetrachloroethene	ND (4.2)	ND (17)	ND (4.1)	ND (2.7)	ND (4.0)	ND (4.0)	ND (4.1)	ND (2.0)	ND (15)	ND (14)	ND (7.9)	ND (9.9)
Toluene	860	660	590	650	680	920	490	460	1,000	1,200	850	860
Trichlorofluoromethane (Freon 11)	ND (3.5)	ND (14)	ND (3.4)	ND (2.2)	ND (3.3)	ND (3.3)	ND (3.4)	ND (1.7)	ND (12)	ND (12)	ND (6.5)	ND (8.2)
Vinyl Chloride	ND (1.6) UJ	ND (6.4)	ND (1.5)	ND (1.0)	ND (1.5)	ND (1.5)	ND (1.6)	ND (0.77)	ND (5.5)	ND (5.3)	ND (3.0)	ND (3.7)
m,p-Xylene	1,700	1,100	1.100	1,200	1,500	2,300	1,200	1,100	2,500	2,900	1,900	1,700
o-Xylene	480	320	300	340	410	680	360	310	650	760	520	450
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Probe Group	1						SG-5							
Probe Location ID	SG-5		SG-5A		SG-5B									
Sample Depth (feet bgs)	5	5	5	5	5	5	5	5	5	5	5	5	5	
EPA Analytical Method	8260B	8260B	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	
Sample Date	2/13/08	10/12/09	4/26/10	10/13/10	6/28/11	10/24/11	DUP 10/24/11	11/6/12	4/18/13	10/16/13	4/8/14	10/8/14	4/15/15	
TPHg	NA	0.955	0.285	ND (0.080)	ND (0.23)	ND (0.16)	ND (0,16)	ND (0.24)	0.70	ND (0.23)	ND (0.24)	ND (0.23)	ND (0.47)	
1,2,4-Trichlorobenzene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.034)	ND (0.023)	ND (0.023)	ND (0.034)	ND (0.037)	ND (0.034)	ND (0.035)	ND (0.034)	ND (0.034	
1.2.4-Trimethylbenzene	ND (0.007)	0.119	0.016	ND (0.008)	ND (0.0056)	ND (0.0038)	ND (0.0038)	ND (0.0057)	0.021	ND (0.0056)	ND (0.0058)	ND (0.0056)	ND (0.005	
1,3,5-Trimethylbenzene	ND (0.007)	0.027	ND (0.008)	ND (0.008)	ND (0.0056)	ND (0.0038)	ND (0.0038)	ND (0.0057)	0.0063	ND (0.0056)	ND (0.0058)	ND (0.0056)	ND (0.005	
1.3-Butadiene	NA	NA	NA	NA	ND (0.0025)	ND (0.0017)	ND (0.0017)	ND (0.0026)	ND (0.0027)	ND (0.0025)	ND (0.0026)	ND (0.0025)	ND (0.002	
2,2,4-Trimethylpentane	NA	NA	NA	NA	ND (0.0053)	ND (0.0037)	ND (0.0037)	ND (0.0054)	0.0097	ND (0.0053)	ND (0.0055)	ND (0.0053)	ND (0.005	
2-Butanone (MEK)	NA	NA	NA	NA	0.015	ND (0.0092)	ND (0.0092)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.01	
4-Ethyltoluene	NA	NA	NA	NA	ND (0.0056)	ND (0.0038)	ND (0.0038)	ND (0.0057)	0.012	ND (0.0056)	ND (0.0058)	ND (0.0056)	ND (0.005	
4-Isopropyltoluene	ND (0.007)	0.044	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Acetone	NA	NA	NA	NA	0.13 J+	ND (0.0074)	0.016 UN	0.058	ND (0.029)	ND (0.027)	0.029	0.029	ND (0.02)	
Benzene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0036)	ND (0.0025)	ND (0.0025)	ND (0.0037)	ND (0.0039)	ND (0.0036)	ND (0.0038)	ND (0.0036)	ND (0.003	
Bromodichloromethane	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0077)	ND (0.0052)	ND (0.0052)	ND (0.0078)	ND (0.0083)	ND (0.0077)	ND (0.0079)	ND (0.0077)	ND (0.007	
n-Butylbenzene	ND (0.007)	0.057	ND (0.008)	ND (0.008)	NA	NA	NA.	NA	NA	NA	NA	NA	NA	
sec-Butylbenzene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
tert-Butylbenzene	ND (0.007)	0.102	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Carbon disulfide	NA	NA	NA	NA	ND (0.014)	ND (0.0098)	ND (0.0098)	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.01	
Carbon tetrachtoride	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0072)	ND (0.0049)	ND (0.0049)	ND (0.0073)	ND (0.0078)	ND (0.0072)	ND (0.0074)	ND (0.0072)	ND (0.007	
Chloroform	ND (0.007)	0.142	0.025	0.115	0.077	0.040	0.039	0.023	0.010	0.0084	ND (0.0058)	ND (0.0056)	ND (0.005	
Cyclohexane	NA	NA	NA	NA	ND (0.0039)	ND (0.0027)	ND (0.0027)	ND (0.0040)	ND (0.0042)	ND (0.0039)	ND (0.0041)	0.0050	ND (0.004	
Dichlorodifluoromethane (Freon 12)	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0057)	ND (0.0039)	ND (0.0039)	ND (0.0058)	ND (0.0061)	ND (0.0057)	ND (0.0058)	ND (0.0057)	ND (0.005	
Ethanol	NA	NA	NA	NA	0.018	ND (0.0059)	ND (0.0059)	0.0093	0.068 J+	ND (0.0086)	ND (0.0089)	0.013	ND (0.008	
Ethylbenzene	ND (0.007)	ND (0.008)	0.052	ND (0.008)	ND (0.0050)	ND (0.0034)	ND (0.0034)	ND (0.0050)	ND (0.0054)	ND (0.0050)	ND (0.0051)	ND (0.0050)	ND (0.005	
Heptane	NA	NA	NA	NA	ND (0.0047)	ND (0.0032)	ND (0.0032)	ND (0.0048)	ND (0.0051)	ND (0.0047)	ND (0.0048)	ND (0.0047)	ND (0.004	
Hexane	NA	NA	NA	NA	ND (0.0040)	ND (0.0028)	ND (0.0028)	ND (0.0041)	ND (0.0044)	ND (0.0040)	ND (0.0042)	ND (0.0040)	ND (0.004	
Isopropylbenzene (Cumene)	ND (0.007)	0.021	ND (0.008)	ND (0.008)	ND (0.0056)	ND (0.0038)	ND (0.0028)	ND (0.0057)	ND (0.0061)	ND (0.0056)	ND (0.0058)	ND (0.0056)	ND (0.005	
Methylene chloride	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0040)	ND (0.0027)	ND (0.0027)	ND (0.040)	ND (0.043)	ND (0.040)	ND (0.041)	ND (0.040)	ND (0.04	
Naphthalene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.024)	ND (0.016)	ND (0.016)	ND (0.024)	ND (0.045)	ND (0.024)	ND (0.025)	ND (0.040)	ND (0.024	
n-Propylbenzene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0056)	ND (0.0038)	ND (0.0038)	ND (0.0057)	ND (0.0061)	ND (0.0056)	ND (0.0058)	ND (0.0056)	ND (0.005	
Styrene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0030)	ND (0.0033)	ND (0.0038)	ND (0.0057)	ND (0.0053)	ND (0.0030)	ND (0.0050)	ND (0.0030)	ND (0.003	
Tetrachloroethene	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0049)	ND (0.0053)	ND (0.0053)	ND (0.0030)	ND (0.0033)	ND (0.0078)	ND (0.0030)	ND (0.0043)	ND (0.004	
Toluene	0.059	0.122	0.060	ND (0.008)	ND (0.0043)	ND (0.0030)	ND (0.0033)	ND (0.0044)	0.011	ND (0.0078)	ND (0.0080)	ND (0.0078)	ND (0.007	
Trichlorofluoromethane (Freon 11)	ND (0.007)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0043)	ND (0.0030)	ND (0.0030)	ND (0.0044)	ND (0.0069)	ND (0.0043)	ND (0.0044)	ND (0.0043)	ND (0.004	
Vinyl Chloride	and a second of a	ND (0.008)		ND (0.008)	ND (0.0064) ND (0.0029)	ND (0.0044)	ND (0.0044) ND (0.0020)	ND (0.0065) ND (0.0030)		ND (0.0064) ND (0.0029)	ND (0.0086) ND (0.0030)	ND (0.0064) ND (0.0029)	ND (0.000	
	ND (0.007)	and the second sec	ND (0.008)	and the second	a second second second second second		and the second se	and the second	ND (0.0032)	and the state of the	and the second sec		the second se	
m,p-Xylene	NA	NA	NA	NA	ND (0.0050)	ND (0.0034)	ND (0.0034)	ND (0.0050)	0.016	ND (0.0050)	ND (0.0051)	ND (0.0050)	ND (0.005	
o-Xylene	NA ND (0.007)	NA	NA	NA ND (0.000)	ND (0.0050)	ND (0.0034)	ND (0.0034)	ND (0.0050)	0.0072	ND (0.0050)	ND (0.0051)	ND (0.0050)	ND (0.005	
Xylenes (total)	ND (0.007)	0.321	0.157	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Other VOCs	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Probe Group	SG-5												
Probe Location ID	T	-		SG	-5B				SG-5		SG-5A		
Sample Depth (feet bgs)	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	15	14.5	14.5	14.5	
EPA Analytical Method	TO-15	TO-15	TO-15	TO-15	TO-15	TQ-15	TO-15	TO-15	8260B	8260B	8260B	8260B	
Sample Date	6/28/11	10/24/11	11/6/12	4/18/13	10/16/13	4/9/14	10/8/14	4/15/15	2/12/08	10/12/09	4/26/10	10/13/10	
TPHg	NS	NS	NS	NS	NS	NS	ND (0.25)	ND (0.45)	NA	17.5	2,26	NS	
1,2,4-Trichlorobenzene	NS	NS	NS	NS	NS	NS	ND (0.036)	ND (0.032)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
1,2,4-Trimethylbenzene	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0054)	ND (0.018)	0.046	ND (0.008)	NS	
1,3,5-Trimethylbenzene	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0054)	ND (0.018)	0.052	ND (0.008)	NS	
1,3-Butadiene	NS	NS	NS	NS	NS	NS	ND (0.0027)	ND (0.0024)	NA	NA	NA	NS	
2,2,4-Trimethylpentane	NS	NS	NS	NS	NS	NS	ND (0.0057)	ND (0.0051)	NA	NA	NA	NS	
2-Butanone (MEK)	NS	NS	NS	NS	NS	NS	ND (0.014)	ND (0.013)	NA	NA	NA	NS	
4-Ethyltoluene	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0054)	NA	NA	NA	NS	
4-Isopropyltoluene	NS	NS	NS	NS	NS	NS	NA	NA	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Acetone	NS	NS	NS	NS	NS	NS	ND (0.029)	ND (0.026)	NA	NA	NA	NS	
Benzene	NS	NS	NS	NS	NS	NS	ND (0.0039)	ND (0.0035)	0.214	0.109	ND (0.008)	NS	
Bromodichloromethane	NS	NS	NS	NS	NS	NS	ND (0.0082)	ND (0.0073)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
n-Butylbenzene	NS	NS	NS	NS	NS	NS	NA	NA	ND (0.018)	ND (0.008)	ND (0.008)	NS	
sec-Butylbenzene	NS	NS	NS	NS	NS	NS.	NA	NA	ND (0.018)	ND (0.008)	ND (0.008)	NS	
tert-Butylbenzene	NS	NS	NS	NS	NS	NS	NA	NA	ND (0.018)	0.105	ND (0.008)	NS	
Carbon disulfide	NS	NS	NS	NS	NS	NS	ND (0.015)	ND (0.014)	NA	NA	NA	NS	
Carbon tetrachloride	NS	NS	NS	NS	NS	NS	ND (0.0077)	ND (0.0069)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Chloroform	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0053)	ND (0.018)	0.009	ND (0.008)	NS	
Cyclohexane	NS	NS	NS	NS	NS	NS	ND (0.0042)	ND (0.0038)	NA	NA	NA	NS	
Dichlorodifluoromethane (Freon 12)	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0054)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Ethanol	NS	NS	NS	NS	NS	NS	ND (0.0092)	ND (0.0082)	NA	NA	NA	NS	
Ethylbenzene	NS	NS	NS	NS	NS	NS	ND (0.0053)	ND (0.0048)	ND (0.018)	0,124	0.258	NS	
Heptane	NS	NS	NS	NS	NS	NS	ND (0.0050)	ND (0.0045)	NA	NA	NA	NS	
Hexane	NS	NS	NS	NS	NS	NS	ND (0.0043)	ND (0.0038)	NA	NA	NA	NS	
Isopropylbenzene (Cumene)	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0054)	ND (0.018)	0.640	ND (0.008)	NS	
Methylene chloride	NS	NS	NS	NS	NS	NS	ND (0.042)	ND (0.038)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Naphthalene	NS	NS	NS	NS	NS	NS	ND (0.026)	ND (0.023)	ND (0.018)	0.035	ND (0.008)	NS	
n-Propylbenzene	NS	NS	NS	NS	NS	NS	ND (0.0060)	ND (0.0054)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Styrene	NS	NS	NS	NS	NS	NS	ND (0.0052)	ND (0.0047)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Tetrachloroethene	NS	NS	NS	NS	NS	NS	ND (0.0083)	ND (0.0074)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Toluene	NS	NS	NS	NS	NS	NS	ND (0.0046)	ND (0.0041)	1.56	0.211	0.036	NS	
Trichlorofluoromethane (Freon 11)	NS	NS	NS	NS	NS	NS	ND (0.0068)	ND (0.0062)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
Vinyl Chloride	NS	NS	NS	NS	NS	NS	ND (0.0031)	ND (0.0028)	ND (0.018)	ND (0.008)	ND (0.008)	NS	
m,p-Xylene	NS	NS	NS	NS	NS	NS	ND (0.0053)	ND (0.0048)	NA	NA	NA	NS	
o-Xviene	NS	NS	NS	NS	NS	NS	ND (0.0053)	ND (0.0048)	NA	NA	NA	NS	
Xylenes (total)	NS	NS	NS	NS	NS	NS	NA	NA	ND (0.018)	0.527	0.242	NS	
Other VOCs	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	NS	

Probe Group						SG						
Probe Location ID	SG-6		ć.		Y		SG-6A			C	7	
Sample Depth (feet bgs)	5	5	5	5	5	5	5	5	5	5	5	5
EPA Analytical Method	8260B	8260B	TO-15	8260B	TO-15	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	2/12/08	10/12/09	CONF 10/12/09	4/26/10	CONF 4/26/10	10/13/10	6/29/11	10/4/11	11/7/12	4/20/13	10/17/13	4/9/2014
TPHg	NA	6.65	19	ND (0.08)	ND (1.7)	ND (0.080)	NS	ND (0.21)	ND (0.95)	ND (0.24)	ND (0.24)	ND (0.25)
1,2,4-Trichlorobenzene	ND (0.018)	ND (0.008)	ND (0.021)	ND (0.008)	ND (0.038)	ND (0.008)	NS	ND (0.031) UJ	ND (0.34)	ND (0.035)	ND (0.034)	ND (0.037
1.2.4-Trimethylbenzene	ND (0.018)	0.342	0.054	ND (0.008)	ND (0.013)	ND (0.008)	NS	ND (0.0051)	ND (0.057)	0.0078	ND (0.0057)	ND (0.006
1,3,5-Trimethylbenzene	ND (0.018)	0.188	0.093	ND (0.008)	ND (0.020)	ND (0.008)	NS	ND (0.0051)	ND (0.057)	ND (0.0058)	ND (0.0057)	ND (0.006
1,3-Butadiene	NA	NA	NA	NA	NA	NA	NS	ND (0.0023)	ND (0.026)	ND (0.0026)	ND (0.0026)	ND (0.002)
2,2,4-Trimethylpentane	NA	NA	NA	NA	NA	NA	NS	ND (0.0049)	ND (0.054)	ND (0.0055)	ND (0.0054)	ND (0.0058
2-Butanone (MEK)	NA	NA	0.011 J	NA	ND (0.018)	NA	NS	ND (0.012)	ND (0.14)	ND (0.014)	ND (0.014)	ND (0.014
4-Ethvitoluene	NA	NA	0.088	NA	ND (0.010)	NA	NS	ND (0.0051)	ND (0.057)	ND (0.0058)	ND (0.0057)	ND (0.006*
4-Isopropyltoluene	ND (0.018)	0.057	NA	ND (0.008)	NA	ND (0:008)	NS	NA	NA	NA	NA	NA
Acetone	NA	NA	ND (0.0069)	NA	0.053	NA	NS	ND (0.0099)	ND (0.11)	ND (0.028)	ND (0.027)	ND (0.029
Benzene	0.608	ND (0.008)	0.016	ND (0.008)	ND (0.0097)	ND (0.008)	NS	ND (0.0033)	ND (0.037)	ND (0.0038)	ND (0.0037)	ND (0.0039
Bromodichloromethane	ND (0.018)	ND (0.008)	ND (0.0078)	ND (0.008)	ND (0.014)	ND (0.008)	NS	ND (0.0070)	ND (0.078)	ND (0.0079)	ND (0.0077)	ND (0.0083
n-Butylbenzene	ND (0.018)	0.076	NA	ND (0.008)	NA	ND (0.008)	NS	NA	NA	NA.	NA	NA
sec-Butylbenzene	ND (0.018)	0.301	NA	ND (0.008)	NA	ND (0.008)	NS	NA	NA	NA	NA	NA
tert-Butylbenzene	ND (0.018)	ND (0.008)	NA	ND (0.008)	NA	ND (0.008)	NS	NA	NA	NA	NA	NA
Carbon disulfide	NA	NA	0.019 J	NA	ND (0.025)	NA	NS	ND (0.013)	ND (0.036)	ND (0.015)	ND (0.014)	ND (0.015
Carbon tetrachloride	ND (0.018)	ND (0.008)	ND (0.0073)	ND (0.008)	ND (0.013)	ND (0.008)	NS	ND (0,0066)	ND (0.073)	ND (0.0074)	ND (0.0073)	ND (0.0078
Chloroform	ND (0.018)	ND (0.008)	0.010 J	ND (0.008)	ND (0.0099)	ND (0.008)	NS	0.068	ND (0.057)	ND (0.0058)	ND (0.0056)	ND (0.0060
Cyclohexane	NA	NA	NA	NA	NA	NA	NS	ND (0.0036)	ND (0.040)	ND (0.0041)	ND (0.0040)	ND (0.004
Dichlorodifluoromethane (Freon 12)	ND (0.018)	ND (0.008)	ND (0.0086)	ND (0.008)	ND (0.010)	ND (0.008)	NS	ND (0.0052)	ND (0.058)	ND (0.0058)	ND (0.0057)	ND (0.006
Ethanol	NA	NA	NA	NA	NA	NA	NS	ND (0.0079)	ND (0.088)	0.016 UN	ND (0.0087)	ND (0.009)
Ethylbenzene	0.940	0.649	0.082	ND (0.008)	ND (0.0088)	ND (0.008)	NS	ND (0.0045)	ND (0.050)	ND (0.0051)	ND (0.0050)	ND (0.0054
Heptane	NA	NA	NA	NA	NA	NA	NS	ND (0.0043)	ND (0.048)	ND (0.0048)	ND (0.0047)	ND (0.005
Hexane	NA	NA	NA	NA	NA	NA	NS	ND (0.0037)	ND (0.041)	ND (0.0042)	ND (0.0041)	ND (0.0044
Isopropylbenzene (Cumene)	ND (0.018)	0.095	NA	ND (0.008)	NA	ND (0.008)	NS	ND (0.0051)	ND (0.057)	ND (0.0058)	ND (0.0057)	ND (0.006
Methylene chloride	ND (0.018)	ND (0.008)	0.0096 UN	ND (0.008)	0.0095 J, UN	ND (0.008)	NS	ND (0.0036)	ND (0.040)	ND (0.041)	ND (0.040)	ND (0.043
Naphthalene	ND (0.018)	ND (0.008)	0.023 J	ND (0.008)	ND (0.032)	ND (0.008)	NS	ND (0.022) UJ	ND (0.24)	ND (0.025)	ND (0.024)	ND (0.026
n-Propylbenzene	ND (0.018)	0.021	NA	ND (0.008)	NA	ND (0.008)	NS	ND (0.0051)	ND (0.057)	ND (0.0058)	ND (0.0057)	ND (0.006
Styrene	ND (0.018)	ND (0.008)	ND (0.0049)	ND (0.008)	ND (0.0087)	ND (0.008)	NS	ND (0.0044)	ND (0.050)	ND (0.0050)	ND (0.0049)	ND (0.005
Tetrachloroethene	ND (0.018)	ND (0.008)	ND (0.0079)	ND (0.008)	ND (0.014)	ND (0.008)	NS	ND (0.0071)	ND (0.079)	ND (0.0080)	ND (0.0078)	ND (0.008
Toluene	5.97	0.141	0.052	ND (0.008)	0.0092 J	ND (0.008)	NS	ND (0.0039)	ND (0.044)	ND (0.0044)	ND (0.0044)	ND (0.004
Trichlorofluoromethane (Freon 11)	ND (0.018)	ND (0.008)	ND (0.0065)	ND (0.008)	ND (0.011)	ND (0.008)	NS	ND (0.0059)	ND (0.065)	ND (0.0066)	ND (0.0065)	ND (0.006
Vinyl Chloride	ND (0.018)	ND (0.008)	ND (0.0059)	ND (0.008)	ND (0.010)	ND (0.008)	NS	ND (0.0027)	ND (0.030)	ND (0.0030)	ND (0.0030)	ND (0.003
m.p-Xylene	NA	NA	NA NA	NA	NA	NA	NS	ND (0.0045)	ND (0.050)	ND (0.0051)	ND (0.0050)	ND (0.005
o-Xviene	NA	NA	NA	NA	NA	NA	NS	ND (0.0045)	ND (0.050)	ND (0.0051)	ND (0.0050)	ND (0.005
Xylenes (total)	6.00	1.14	0.40	ND (0.008)	ND (0.0088)	ND (0.008)	NS	NA NA	NA NA	NA NA	NA NA	NA NA
Other VOCs	ND	ND	ND	ND	ND (0.0000)	ND	NS	ND	ND	ND	ND	0.0055 4

Probe Group	1		-				SG-6						
Probe Location ID	SG	i-6A	SG-6					SG	-6A	-			
Sample Depth (feet bgs)	5	5	15	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
EPA Analytical Method	TO-15	TO-15	8260B	8260B	8260B	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	10/9/14	4/16/15	2/12/08	10/12/09	4/26/10	DUP 4/26/10	10/13/10	CONF 10/13/2010	6/29/11	10/4/11	11/7/12	DUP 11/7/12	4/20/13
TPHa	ND (0.25)	ND (0.52)	NA	946	1,990	2,090	3,000	3,200	4,400	3,200	4.600	4,200	1.800
1,2,4-Trichlorobenzene	ND (0.037)	ND (0.037)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (2.2)	ND (1.8)	ND (8.3)	ND (8.6)	ND (11)	ND (1.8)
1.2.4-Trimethylbenzene	ND (0.0061)	ND (0.0062)	ND (0.018)	11.1	13.3	154	188	79	110	100	110	100	33
1,3,5-Trimethylbenzene	ND (0.0061)	ND (0.0062)	ND (0.018)	29.6	38.3	85.5	40.7	30	28	26	32	30	9.8
1.3-Butadiene	ND (0.0027)	ND (0.0028)	NA	NA	NA	NA	NA	NA	ND (0.13)	ND (0.62) UJ	ND (0.64)	ND (0.84)	ND (0.14)
2,2,4-Trimethylpentane	ND (0.0058)	ND (0.0059)	NA	NA	NA	NA	NA	NA	ND (0.28)	ND (1.3)	ND (1.4)	ND (1.8)	0.86
2-Butanone (MEK)	ND (0.015)	ND (0.015)	NA	NA	NA	NA	NA.	ND (1.1)	ND (0.70)	ND (3.3)	ND (3.4)	ND (4.5)	ND (0.74)
4-Ethyltoluene	ND (0.0061)	ND (0.0062)	NA	NA	NA	NA	NA	48	46	48	54	48	17
4-Isopropyltoluene	NA	NA	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	0.540	NA	NA	NA	NA	NA	NA
Acetone	ND (0.029)	ND (0.030)	NA	NA	NA	NA	NA	ND (1,1)	ND (0.56)	ND (2.7)	ND (2.8)	ND (3.6)	ND (0.59)
Benzene	ND (0.0040)	ND (0.0040)	19.1	3.54	5.12	5.37	7.87	8.1	5.9	7.8	6.1	5.9	6.2
Bromodichloromethane	ND (0.0083)	ND (0.0084)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.81)	ND (0.40)	ND (1.9)	ND (1.9)	ND (2.6)	ND (0.42)
n-Butylbenzene	NA	NA	ND (0.018)	ND (0.02)	1.71	2.30	6.24	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	1.00	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	ND (0.018)	0.995	0.318	ND (0.4)	ND (0.008)	NA	NA	NA	NA	NA	NA
Carbon disulfide	ND (0.015)	ND (0.016)	NA	NA	NA	NA	NA	ND (1.5)	ND (0.18)	ND (0.87)	ND (0.91)	ND (1.2)	ND (0.19)
Carbon tetrachtoride	ND (0.0078)	ND (0.0079)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.76)	ND (0.37)	ND (1.8)	ND (1.8)	ND (2.4)	ND (0.39)
Chloroform	ND (0.0060)	ND (0.0062)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.59)	ND (0.29)	ND (1.4)	ND (1.4)	ND (1.9)	ND (0.30)
Cyclohexane	ND (0.0043)	ND (0.0043)	NA	NA	NA	NA	NA	NA	6.6	7.4	5.7	5.3	5.4
Dichlorodifluoromethane (Freon 12)	ND (0.0061)	ND (0.0062)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.60)	ND (0.29)	ND (1.4)	ND (1.4)	ND (1.9)	ND (0.31)
Ethanol	ND (0.0093)	ND (0.0095)	NA	NA	NA	NA	NA	NA	ND (0.45)	ND (2.1)	ND (2.2)	ND (2.9)	ND (0.47)
Ethylbenzene	ND (0.0054)	ND (0.0055)	10.4	43.5	17.1	20.0	194	100	93	120	110	100	59
Heptane	ND (0.0051)	ND (0.0052)	NA	NA	NA	NA	NA	NA	47	55	44	41	38
Hexane	ND (0.0044)	ND (0.0044)	NA	NA	NA	NA	NA	NA	12	14	9.2	8.9	8.6
Isopropylbenzene (Cumene)	ND (0.0061)	ND (0.0062)	0.441	9.87	19.5	23.2	35.5	NA	15	19	20	18	7.8
Methylene chloride	ND (0.043)	ND (0.044)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.42)	ND (0.21)	ND (0.97)	ND (1.0)	ND (1.3)	ND (0.22)
Naphthalene	ND (0.026)	ND (0.026)	ND (0.018)	19.7	10.6	42.4	28.0	9.3	73 E	34	31	40	12
n-Propylbenzene	ND (0.0061)	ND (0.0062)	ND (0.018)	ND (0.02)	8.76	11.5	18.0	NA	10	12	13	12	4.0
Styrene	ND (0.0053)	ND (0.0054)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.51)	ND (0.25)	ND (1.2)	ND (1.2)	ND (1.6)	1.4
Tetrachloroethene	ND (0.0084)	ND (0.0085)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.82)	ND (0.40)	ND (1.9)	ND (2.0)	ND (2.6)	ND (0.42)
Toluene	ND (0.0047)	ND (0.0047)	99.3	70.0	124	138	148	96	76	100	49	45	30
Trichlorofluoromethane (Freon 11)	ND (0.0070)	ND (0.0071)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.68)	ND (0.33)	ND (1.6)	ND (1.6)	ND (2.1)	ND (0.35)
Vinyl Chloride	ND (0.0032)	ND (0.0032)	ND (0.018)	ND (0.02)	ND (0.008)	ND (0.4)	ND (0.008)	ND (0.62)	ND (0.15)	ND (0.72) UJ	ND (0.74)	ND (0.98)	ND (0.16)
m,p-Xylene	ND (0.0054)	0.0062	NA	NA	NA	NA	NA.	NA	190	250	240	220	120
o-Xylene	ND (0.0054)	ND (0.0055)	NA	NA	NA	NA	NA	NA	140	170	66	62	31
Xylenes (total)	NA	NA	24.7	258	546	622	658	230	NA	NA	NA	NA	NA
Other VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Probe Group	1				SG-6				10		G-7	S	G-8
Probe Location ID					SG-6A			-		S	G-7	S	G-8
Sample Depth (feet bgs)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	5	15	5	5
EPA Analytical Method	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	8260B	8260B	8260B	8260B
Sample Date	DUP	1.2.2.2.1	DUP	1.	DUP	1.7.2.5.1	DUP		DUP		1000	122.51	1.1.1.1.1.1.1.1
Sample Date	4/20/13	10/17/13	10/17/13	4/9/14	4/9/14	10/9/14	10/9/14	4/16/15	4/16/15	2/12/08	2/12/08	10/12/09	4/26/10
TPHa	1,700	5,300	4,000	2,500	3,200	4,000	4,000	2,600	2,500	NA	NA	ND (0.008)	2.14
1,2,4-Trichlorobenzene	ND (1.2)	ND (6.1)	ND (7.3)	ND (2.4)	ND (5.5)	ND (18)	ND (18)	ND (15) UJ	ND (14) UJ	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
1.2.4-Trimethylbenzene	32	150	130	61	96	170	180	96	120	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
1,3,5-Trimethylbenzene	9.3	37	32	15	23	39	36	25	26	ND (0.018)	ND (0.018)	ND (0.008)	0.293
1,3-Butadiene	ND (0.090)	ND (0.45)	ND (0.54)	ND (0.18)	ND (0.41)	ND (1.3)	ND (1.3)	ND (1.1)	ND (1.1)	NA	NA	NA	NA
2.2.4-Trimethylpentane	0.91	ND (0.96)	ND (1.1)	0.53	ND (0.87)	ND (2.8)	ND (2.8)	ND (2.3)	ND (2.2)	NA	NA	NA	NA
2-Butanone (MEK)	ND (0.48)	ND (2.4)	ND (2.9)	ND (0.94)	ND (2.2)	ND (7.0)	ND (7.0)	ND (5.8)	ND (5.7)	NA	NA	NA	NA
4-Ethyltoluene	16	66	57	28	42	69	72	48	53	NA	NA	NA	NA
4-Isopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Acetone	ND (0.39)	ND (1.9)	ND (2.3)	ND (0.76)	ND (1.8)	ND (5.6)	ND (5.6)	ND (12)	ND (11)	NA	NA	NA	NA
Benzene	5.9	5.4	5.4	2.8	3.6	5.7	6.0	7.5	7.1	0.051	1.19	ND (0.008)	ND (0.008
Bromodichloromethane	ND (0.27)	ND (1.4)	ND (1.6)	ND (0.53)	ND (1.2)	ND (4.0)	ND (4.0)	ND (3.3)	ND (3.2)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA.	NA	NA	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
sec-Butvlbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Carbon disulfide	ND (0.13)	ND (0.64)	ND (0.76)	ND (0.25)	ND (0.58)	ND (1.8)	ND (1.8)	ND (6.2)	ND (6.0)	NA	NA	NA	NA
Carbon tetrachtoride	ND (0.26)	ND (1.3)	ND (1.5)	ND (0.50)	ND (1.2)	ND (3.7)	ND (3.7)	ND (3,1)	ND (3.0)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Chloroform	ND (0.20)	ND (1.0)	ND (1.2)	ND (0.39)	ND (0.91)	ND (2.9)	ND (2.9)	ND (2.4)	ND (2.3)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Cyclohexane	5.4	6.4	6.2	3.5	4.3	6.1	6.1	6.9	6.6	NA	NA	NA	NA
Dichlorodifluoromethane (Freon 12)	ND (0.20)	ND (1.0)	ND (1.2)	ND (0.39)	ND (0.92)	ND (2.9)	ND (2.9)	ND (2.4)	ND (2.4)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Ethanol	ND (0.31)	ND (1.5)	ND (1.8)	ND (0.60)	ND (1.4)	ND (4.5)	ND (4.5)	ND (3.7)	ND (3.6)	NA	NA	NA	NA
Ethylbenzene	56	140	130	70	93	150	150	150	160	1.26	0.358	ND (0.008)	0.019
Heptane	37	51	51	30	37	56	58	53	52	NA	NA	NA	NA
Hexane	8.7	8.4	8.6	4.8	5.8	10	10	9.7	9.6	NA	NA	NA	NA
Isopropylbenzene (Cumene)	7.4	25	23	12	16	27	27	22	25	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Methylene chloride	ND (0,14)	ND (0.71)	ND (0.85)	ND (0.28)	ND (0.65)	ND (2.1)	ND (2.1)	ND (17)	ND (17)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Naphthalene	11	58	55	25	60	88	90	ND (10)	12	ND (0.018)	ND (0.018)	ND (0.008)	0.263
n-Propylbenzene	3.7	16.0	14	6.1	9.0	15	15	11	13	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Styrene	1.3	3.2	2.9	ND (0.34)	ND (0.79)	ND (2.5)	ND (2.5)	ND (2.1)	ND (2.0)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
Tetrachloroethene	ND (0.28)	ND (1.4)	ND (1.7)	ND (0.54)	ND (1.3)	ND (4.0)	ND (4.0)	ND (3.4)	ND (3.2)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.00
Toluene	28	46	43	33	42	90	91	100	100	2.01	6.97	ND (0.008)	0.031
Trichlorofluoromethane (Freon 11)	ND (0.23)	ND (1.2)	ND (1.4)	ND (0.45)	ND (1.0)	ND (3.3)	ND (3.3)	ND (2.8)	ND (2.7)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.00
Vinyl Chloride	ND (0.10)	ND (0.52)	ND (0.63)	ND (0.20)	ND (0.48)	ND (1.5)	ND (1.5)	ND (1.3)	ND (1.2)	ND (0.018)	ND (0.018)	ND (0.008)	ND (0.008
m,p-Xylene	110	280	260	150	200	360	360	330	370	NA	NA	NA	NA
o-Xylene	30	76	71	47	64	130	130	160	170	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	16.0	1.10	ND (0.008)	0.473
Other VOCs	ND	ND	1.4 4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Probe Group						SG-8					
Probe Location ID			a			SG-8				/	
Sample Depth (feet bgs)	5	5	5	5	5	5	5	5	5	5	14.5
EPA Analytical Method	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	8260B
Sample Date	10/13/10	6/28/11	10/3/11	DUP 10/3/11	11/7/12	4/20/13	10/16/13	4/8/2014	10/7/14	4/14/15	10/12/09
TPHg	ND (0.080)	ND (0.25)	ND (0.24)	ND (0.24)	ND (0.24)	0.66	ND (0.24)	ND (0.24)	ND (0.23)	ND (0.47)	ND (0.008)
1,2,4-Trichlorobenzene	ND (0.008)	ND (0.036)	ND (0.034) UJ	ND (0.034) UJ	ND (0.034)	ND (0.037)	ND (0.034)	ND (0.035)	ND (0.034)	ND (0.034)	ND (0.008)
1,2,4-Trimethylbenzene	ND (0.008)	ND (0.0059)	ND (0.0057)	ND (0.0057)	ND (0.0056)	0.040	ND (0.0057)	ND (0.0058)	ND (0.0056)	ND (0.0057)	ND (0.008)
1,3,5-Trimethylbenzene	ND (0.008)	ND (0.0059)	ND (0.0057)	ND (0.0057)	ND (0.0056)	0.011	ND (0.0057)	ND (0.0058)	ND (0.0056)	ND (0.0057)	ND (0.008)
1,3-Butadiene	NA	ND (0.0027)	ND (0.0026)	ND (0.0026)	ND (0.0025)	ND (0.0028)	ND (0.0026)	ND (0.0026)	ND (0.0025)	ND (0.0026)	NA
2,2,4-Trimethylpentane	NA	ND (0.0056)	ND (0.0054)	ND (0.0054)	ND (0.0054)	0.0076	ND (0.0054)	ND (0.0055)	ND (0.0053)	ND (0.0054)	NA
2-Butanone (MEK)	NA	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.014)	NA
4-Ethyltoluene	NA	ND (0.0059)	ND (0.0057)	ND (0.0057)	ND (0.0056)	0.030	ND (0.0057)	ND (0.0058)	ND (0.0056)	ND (0.0057)	NA
4-Isopropyltoluene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.008)
Acetone	NA	0.028 UN	0.032 UN	0.017 UN	ND (0.027)	ND (0.030)	ND (0.028)	ND (0.028)	ND (0.027)	ND (0.028)	NA
Benzene	ND (0.008)	ND (0.0039)	ND (0.0037)	ND (0.0037)	ND (0.0037)	ND (0.0040)	ND (0.0037)	ND (0.0038)	ND (0.0036)	ND (0.0037)	ND (0.008)
Bromodichloromethane	ND (0.008)	ND (0.0081)	ND (0.0078)	ND (0.0078)	ND (0.0077)	ND (0.0084)	ND (0.0078)	ND (0.0079)	ND (0.0076)	ND (0.0078)	ND (0.008)
n-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.008)
sec-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.008)
tert-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.008)
Carbon disulfide	NA	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.014)	NA
Carbon tetrachloride	ND (0.008)	ND (0.0076)	ND (0.0073)	ND (0.0073)	ND (0.0072)	ND (0.0079)	ND (0.0073)	ND (0.0074)	ND (0.0071)	ND (0.0073)	ND (0.008)
Chloroform	ND (0.008)	ND (0.0059)	ND (0.0057)	ND (0.0057)	ND (0.0056)	ND (0.0061)	0.020	0.020	0.018	0.010	ND (0.008)
Cyclohexane	NA	ND (0.0042)	ND (0.0040)	ND (0.0040)	0.0044	ND (0.0043)	ND (0.0040)	ND (0.0041)	ND (0.0039)	ND (0.0040)	NA
Dichlorodifluoromethane (Freon 12)	ND (0.008)	ND (0.0060)	ND (0.0058)	ND (0.0058)	ND (0.0057)	ND (0.0062)	ND (0.0058)	ND (0.0059)	ND (0.0056)	ND (0.0057)	ND (0.008)
Ethanol	NA	ND (0.0091)	ND (0.0088)	ND (0.0088)	ND (0.0087)	0.051 J+	ND (0.0088)	ND (0.0089)	ND (0.0086)	ND (0.0087)	NA
Ethylbenzene	ND (0.008)	ND (0.0052)	ND (0.0050)	ND (0.0050)	ND (0.0050)	0.0070	ND (0.0050)	ND (0.0051)	ND (0.0049)	ND (0.0050)	ND (0.008)
Heptane	NA	ND (0.0050)	ND (0.0048)	ND (0.0048)	ND (0.0047)	ND (0.0051)	ND (0.0048)	ND (0.0048)	ND (0.0046)	ND (0.0048)	NA
Hexane	NA	ND (0.0043)	ND (0.0041)	ND (0.0041)	ND (0.0040)	ND (0.0044)	ND (0.0041)	ND (0.0042)	ND (0.0040)	ND (0.0041)	NA.
Isopropylbenzene (Cumene)	ND (0.008)	ND (0.0059)	ND (0.0057)	ND (0.0057)	ND (0.0056)	ND (0.0061)	ND (0.0057)	ND (0.0058)	ND (0.0056)	ND (0.0057)	ND (0.008)
Methylene chloride	ND (0.008)	ND (0.0042)	ND (0.0040)	ND (0.0040)	ND (0.040)	ND (0.043)	ND (0.040)	ND (0.041)	ND (0.039)	ND (0.040)	ND (0.008)
Naphthalene	ND (0.008)	ND (0.025)	ND (0.024) UJ	ND (0.024) UJ	ND (0.024)	ND (0.026)	ND (0.024)	ND (0.025)	ND (0.024)	ND (0.024)	ND (0.008)
n-Propylbenzene	ND (0.008)	ND (0.0059)	ND (0.0057)	ND (0.0057)	ND (0.0056)	ND (0.0061)	ND (0.0057)	ND (0.0058)	ND (0.0056)	ND (0.0057)	ND (0.008
Styrene	ND (0.008)	ND (0.0052)	ND (0.0050)	ND (0.0050)	ND (0.0049)	ND (0.0053)	ND (0.0050)	ND (0.0050)	ND (0.0048)	ND (0.0049)	ND (0.008
Tetrachloroethene	ND (0.008)	ND (0.0082)	ND (0.0079)	ND (0.0079)	ND (0.0078)	ND (0.0085)	ND (0.0079)	ND (0.0080)	ND (0.0077)	ND (0.0079)	ND (0.008
Toluene	ND (0.008)	ND (0.0046)	ND (0.0044)	ND (0.0044)	ND (0.0043)	0.015	ND (0.0044)	ND (0.0045)	0.0058	ND (0.0044)	ND (0.008
Trichlorofluoromethane (Freon 11)	ND (0.008)	ND (0.0068)	ND (0.0065)	ND (0.0065)	ND (0.0065)	ND (0.0070)	ND (0.0065)	ND (0.0066)	ND (0.0064)	ND (0.0065)	ND (0.008
Vinyl Chloride	ND (0.008)	ND (0.0031)	ND (0.0030)	ND (0.0030)	ND (0.0029)	ND (0.0032)	ND (0.0030)	ND (0.0030)	ND (0.0029)	ND (0.0030)	ND (0.008
m,p-Xylene	NA	ND (0.0052)	ND (0.0050)	ND (0.0050)	ND (0.0050)	0.031	ND (0.0050)	ND (0.0051)	ND (0.0049)	ND (0.0050)	NA.
o-Xylene	NA	ND (0.0052)	ND (0.0050)	ND (0.0050)	ND (0.0050)	0.017	ND (0.0050)	ND (0.0051)	ND (0.0049)	ND (0.0050)	NA
Xylenes (total)	ND (0.008)	NA NA	NA NA	NA (0.0050)	NA NA	NA	NA	NA	NA	NA NA	ND (0.008
Other VOCs	ND (0.000)	ND	ND	ND	0.0081 3	ND	ND	ND	ND	ND	ND (0.000

Probe Group						G-8						5-9	
Probe Location ID						G-8	-					3-9	
Sample Depth (feet bgs)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	5	5	5
EPA Analytical Method	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	8260B	8260B	8260B
Sample Date	4/26/10	10/13/10	6/28/11	10/3/11	11/7/12	4/19/13	10/16/13	4/8/2014	10/7/14	4/14/15	10/12/09	DUP 10/12/09	4/26/10
TPHg	5.73	ND (0.080)	ND (0.24)	ND (0.24)	ND (0.24)	1.1	ND (0.24)	ND (0.24)	ND (0.25)	ND (0.46)	0.180	0.195	6.76
1,2,4-Trichlorobenzene	ND (0.008)	ND (0.008)	ND (0.035)	ND (0.034) UJ	ND (0.035)	ND (0.037)	ND (0.035)	ND (0.035)	ND (0.036)	ND (0.034)	ND (0.008)	ND (0.008)	ND (0.008
1,2,4-Trimethylbenzene	ND (0.008)	ND (0.008)	ND (0.0058)	ND (0.0056)	ND (0.0058)	0.054	ND (0.0058)	ND (0.0058)	ND (0.0060)	ND (0.0056)	0.058	0.070	0.360
1,3,5-Trimethylbenzene	0.319	ND (0.008)	ND (0.0058)	ND (0.0056)	ND (0.0058)	0.014	ND (0.0058)	ND (0.0058)	ND (0.0060)	ND (0.0056)	ND (0.008)	ND (0.008)	0.120
1,3-Butadiene	NA	NA	ND (0.0026)	ND (0.0025)	ND (0.0026)	ND (0.0027)	ND (0.0026)	ND (0.0026)	ND (0.0027)	ND (0.0025)	NA	NA	NA
2,2,4-Trimethylpentane	NA	NA	ND (0.0056)	ND (0.0054)	ND (0.0055)	0.014	ND (0.0055)	ND (0.0055)	ND (0.0057)	ND (0.0053)	NA	NA	NA
2-Butanone (MEK)	NA	NA	ND (0.014)	ND (0.014)	0.44 J+	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.013)	NA	NA	NA
4-Ethyltoluene	NA	NA	ND (0.0058)	ND (0.0056)	ND (0.0058)	0.038	ND (0.0058)	ND (0.0058)	ND (0.0060)	ND (0.0056)	NA	NA	NA
4-Isopropyltoluene	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	0.048	0.042	ND (0.008
Acetone	NA	NA	0.015 UN	0.017 UN	0.074 J+	0.032	ND (0.028)	ND (0.028)	ND (0.029)	ND (0.027)	NA	NA	NA
Benzene	ND (0.008)	ND (0.008)	ND (0.0038)	ND (0.0037)	ND (0.0038)	ND (0.0039)	ND (0.0038)	ND (0.0038)	ND (0.0039)	ND (0.0036)	ND (0.008)	ND (0.008)	ND (0.008
Bromodichloromethane	ND (0.008)	ND (0.008)	ND (0.0080)	ND (0.0077)	ND (0.0079)	ND (0.0083)	ND (0.0079)	ND (0.0079)	ND (0.0081)	ND (0.0076)	ND (0.008)	ND (0.008)	ND (0.00)
n-Butylbenzene	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.008)	ND (0.008)	0.011
sec-Butylbenzene	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	0.073	0.083	ND (0.00)
tert-Butylbenzene	ND (0.008)	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.008)	ND (0.008)	ND (0.00
Carbon disulfide	NA	NA	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.014)	NA	NA	NA				
Carbon tetrachloride	ND (0.008)	ND (0.008)	ND (0.0075)	ND (0.0072)	ND (0.0074)	ND (0.0078)	ND (0.0074)	ND (0.0074)	ND (0.0076)	ND (0.0071)	ND (0.008)	ND (0.008)	ND (0.008
Chloroform	ND (0.008)	ND (0.008)	ND (0.0058)	ND (0.0056)	ND (0.0058)	0.20	0.033	ND (0.0058)	ND (0.0059)	ND (0.0055)	ND (0.008)	ND (0.008)	ND (0.00
Cyclohexane	NA	NA	ND (0.0041)	ND (0.0040)	ND (0.0041)	0.0046	ND (0.0041)	ND (0.0041)	0.0049	ND (0.0039)	NA	NA	NA
Dichlorodifluoromethane (Freon 12)	ND (0.008)	ND (0.008)	ND (0.0059)	ND (0.0057)	ND (0.0059)	ND (0.0061)	ND (0.0058)	ND (0.0059)	ND (0.0060)	ND (0.0056)	ND (0.008)	ND (0.008)	ND (0.00
Ethanol	NA	NA	ND (0.0090)	ND (0.0087)	ND (0.0089)	0.11	ND (0.0089)	ND (0.0089)	ND (0.0092)	0.0088	NA	NA	NA
Ethylbenzene	0.559	ND (0.008)	ND (0.0052)	ND (0.0050)	ND (0.0051)	0.011	ND (0.0051)	ND (0.0051)	ND (0.0053)	ND (0.0049)	ND (0.008)	ND (0.008)	1.25
Heptane	NA	NA	ND (0.0049)	ND (0.0047)	ND (0.0048)	ND (0.0051)	ND (0,0048)	ND (0.0048)	ND (0.0050)	ND (0.0046)	NA	NA	NA
Hexane	NA	NA	ND (0.0042)	ND (0.0040)	ND (0.0042)	ND (0.0044)	ND (0.0042)	ND (0.0042)	ND (0.0043)	ND (0.0040)	NA	NA	NA
Isopropylbenzene (Cumene)	ND (0.008)	ND (0.008)	ND (0.0058)	ND (0.0056)	ND (0.0058)	ND (0.0061)	ND (0.0058)	ND (0.0058)	ND (0.0060)	ND (0.0056)	ND (0.008)	ND (0.008)	ND (0.008
Methylene chloride	ND (0.008)	ND (0.008)	0.0044 UN	ND (0.0040)	ND (0.041)	ND (0.043)	ND (0.041)	ND (0.041)	ND (0.042)	ND (0.039)	ND (0.008)	ND (0.008)	ND (0.00)
Naphthalene	0,199	ND (0.008)	ND (0.025)	ND (0.024) UJ	ND (0.025)	ND (0.026)	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.024)	ND (0.008)	ND (0.008)	0.100
n-Propylbenzene	ND (0.008)	ND (0.008)	ND (0.0058)	ND (0.0056)	ND (0.0058)	0.0060	ND (0.0058)	ND (0.0058)	ND (0.0060)	ND (0.0056)	ND (0.008)	ND (0.008)	ND (0.00)
Styrene	ND (0.008)	ND (0.008)	ND (0.0051)	ND (0.0049)	ND (0.0050)	ND (0.0053)	ND (0.0050)	ND (0.0050)	ND (0.0052)	ND (0.0048)	ND (0.008)	ND (0.008)	ND (0.00
Tetrachloroethene	ND (0.008)	ND (0.008)	ND (0.0081)	ND (0.0078)	ND (0.0080)	ND (0.0084)	ND (0.0080)	ND (0.0080)	ND (0.0082)	ND (0.0077)	ND (0.008)	ND (0.008)	ND (0.00)
Toluene	0.529	ND (0.008)	ND (0.0045)	ND (0.0043)	ND (0.0045)	0.028	ND (0.0044)	ND (0.0045)	ND (0.0046)	ND (0.0042)	ND (0.008)	ND (0.008)	0.431
Trichlorofluoromethane (Freon 11)	ND (0.008)	ND (0.008)	ND (0.0067)	ND (0.0065)	ND (0.0066)	ND (0.0069)	ND (0.0066)	ND (0.0066)	ND (0.0068)	ND (0.0063)	ND (0.008)	ND (0.008)	ND (0.00
Vinyl Chloride	ND (0.008)	ND (0.008)	ND (0.0030)	ND (0.0029)	ND (0.0030)	ND (0.0032)	ND (0.0030)	ND (0.0030)	ND (0.0031)	ND (0.0029)	ND (0.008)	ND (0.008)	ND (0.00
m,p-Xylene	NA	NA	ND (0.0052)	ND (0.0050)	ND (0.0051)	0.047	ND (0.0051)	ND (0.0051)	ND (0.0053)	ND (0.0049)	NA	NA	NA
o-Xylene	NA	NA	ND (0.0052)	ND (0.0050)	ND (0.0051)	0.020	ND (0.0051)	ND (0.0051)	ND (0.0053)	ND (0.0049)	NA	NA	NA
Xylenes (total)	1.83	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.007)	ND (0.007)	2.49
Other VOCs	ND	ND	ND	ND	0.061 J+ 4	ND	ND	ND	ND	ND	ND	ND	ND

Probe Group					SG-9					
Probe Location ID	A	- A -	- A. A		SG-9					-
Sample Depth (feet bgs)	5	5	5	5	5	5	5	-5	5	5
EPA Analytical Method	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	10/13/10	6/27/11	10/4/11	DUP 10/4/11	11/8/12	4/20/13	10/16/13	4/8/2014	10/8/14	4/15/15
TPHg	8.61	ND (0.23)	ND (0.24)	ND (0.25)	14	1.5	2.0	0.79	2,1	1.6
1.2.4-Trichlorobenzene	ND (0.008)	ND (0.034)	ND (0.035)	ND (0.036)	ND (0.035)	ND (0.035)	ND (0.036)	ND (0.035)	ND (0.035)	ND (0.035)
1.2.4-Trimethylbenzene	0.718	ND (0.0056)	ND (0.0058)	ND (0.0059)	0.011	0.025	0.011	0.0060	0.0062	0.014
1,3,5-Trimethylbenzene	0.103	ND (0.0056)	ND (0.0058)	ND (0.0059)	ND (0.0058)	0.0087	ND (0.0059)	ND (0.0059)	ND (0.0058)	ND (0.0058
1,3-Butadiene	NA	ND (0.0025)	ND (0.0026)	ND (0.0027)	ND (0.0026)	ND (0.0026)	ND (0.0026)	ND (0.0026)	ND (0.0026)	ND (0.0026
2,2,4-Trimethylpentane	NA	ND (0.0053)	ND (0.0055)	ND (0.0056)	ND (0.0055)	0.032	ND (0.0056)	ND (0.0056)	ND (0.0055)	ND (0.0056
2-Butanone (MEK)	NA	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	0.023	ND (0.014)
4-Ethvitoluene	NA	ND (0.0056)	ND (0.0058)	ND (0.0059)	0.012	0.022	0.0071	ND (0.0059)	0.0072	0.014
4-Isopropyltoluene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	NA	ND (0.011)	0.014 UN	0.014 UN	ND (0.028)	ND (0.028)	0.048	0.058	ND (0.028)	ND (0.028)
Benzene	ND (0.008)	ND (0.0036)	ND (0.0038)	ND (0.0039)	0.0070	0.0042	ND (0.0038)	ND (0.0038)	ND (0.0038)	0.0054
Bromodichloromethane	ND (0.008)	ND (0.0077)	ND (0.0079)	ND (0.0081)	ND (0.0079)	ND (0.0079)	ND (0.0080)	ND (0.0080)	ND (0.0079)	ND (0.0080
n-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	ND (0.008)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon disulfide	NA	ND (0.014)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)
Carbon tetrachloride	ND (0.008)	ND (0,0072)	ND (0.0074)	ND (0.0076)	ND (0.0074)	ND (0.0074)	ND (0.0076)	ND (0.0075)	ND (0.0074)	ND (0.0075
Chloroform	ND (0.008)	ND (0.0056)	ND (0.0057)	ND (0.0059)	ND (0.0058)	ND (0.0058)	ND (0.0058)	ND (0.0058)	ND (0.0057)	ND (0.0058
Cyclohexane	NA	ND (0.0039)	ND (0.0040)	ND (0.0042)	0.027	0.022	0.026	0.025	0.015	0.0099
Dichlorodifluoromethane (Freon 12)	ND (0.008)	ND (0.0057)	ND (0.0058)	ND (0.0060)	ND (0.0059)	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0058)	ND (0.0059
Ethanol	NA	ND (0.0086)	ND (0.0088)	ND (0.0091)	ND (0.0089)	0.11	ND (0.0090)	ND (0.0090)	ND (0.0088)	0.010
Ethylbenzene	0.285	ND (0.0050)	ND (0.0051)	ND (0.0052)	0.022	0.016	0.010	ND (0.0052)	0.0053	0.012
Heptane	NA	ND (0.0047)	ND (0.0048)	ND (0.0050)	0.062	0.0084	0.042	0.023	0.059	0.058
Hexane	NA	ND (0.0040)	ND (0.0040)	ND (0.0043)	0.024	0.005	0.019	0.013	0.027	0.030
Isopropylbenzene (Cumene)	0.031	ND (0.0056)	ND (0.0058)	ND (0.0059)	0.029	ND (0.0058)	0.010	ND (0.0059)	ND (0.0058)	0.011
Methylene chloride	ND (0.008)	ND (0.0040)	ND (0.0041)	ND (0.0042)	ND (0.041)	ND (0.041)	ND (0.042)	ND (0.042)	ND (0.041)	ND (0.041)
Naphthalene	0.217	ND (0.024)	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.025)
n-Propylbenzene	ND (0.008)	ND (0.0056)	ND (0.0058)	ND (0.0059)	0.012	ND (0.0058)	ND (0.0059)	ND (0.0059)	ND (0.0058)	0.0071
Styrene	ND (0.008)	ND (0.0049)	ND (0.0050)	ND (0.0052)	ND (0.0050)	ND (0.0050)	ND (0.0051)	ND (0.0051)	ND (0.0050)	ND (0.0051
Tetrachloroethene	ND (0.008)	ND (0.0078)	ND (0.0080)	ND (0.0082)	ND (0.0080)	ND (0.0080)	ND (0.0081)	ND (0.0081)	ND (0.0080)	ND (0.0081
Toluene	0.156	ND (0.0043)	ND (0.0044)	ND (0.0046)	0.013	0.048	0.0060	ND (0.0045)	0.013	0.018
Trichlorofluoromethane (Freon 11)	ND (0.008)	ND (0.0043)	ND (0.0044) ND (0.0066)	ND (0.0048) ND (0.0068)	ND (0.0066)	ND (0.0066)	ND (0.0067)	ND (0.0045)	ND (0.0066)	ND (0.0067
Vinyl Chloride	ND (0.008) ND (0.008)	ND (0.0064) ND (0.0029)	ND (0.0066) ND (0.0030)	ND (0.0068) ND (0.0031)	ND (0.0066) ND (0.0030)	ND (0.0066) ND (0.0030)	ND (0.0067) ND (0.0031)	ND (0.0087) ND (0.0030)	ND (0.0066)	ND (0.0067 ND (0.0030
	a second data and a first second second	and the second second to be an	and the second	and the second se	a second second second second second second second	and the set of the set of the set of the	and the second se		and the second se	
m,p-Xylene	NA	ND (0.0050)	ND (0.0051)	ND (0.0052)	0.052	0.075	0.036	0.017	0.023	0.032
o-Xylene	NA	ND (0.0050)	ND (0.0051)	ND (0.0052)	0.026	0.025	0.011	ND (0.0052)	0.0064	0.017
Xylenes (total)	1.27	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other VOCs	ND	ND	ND	ND	ND	ND	0.0044 4	0.0051 8	ND	ND

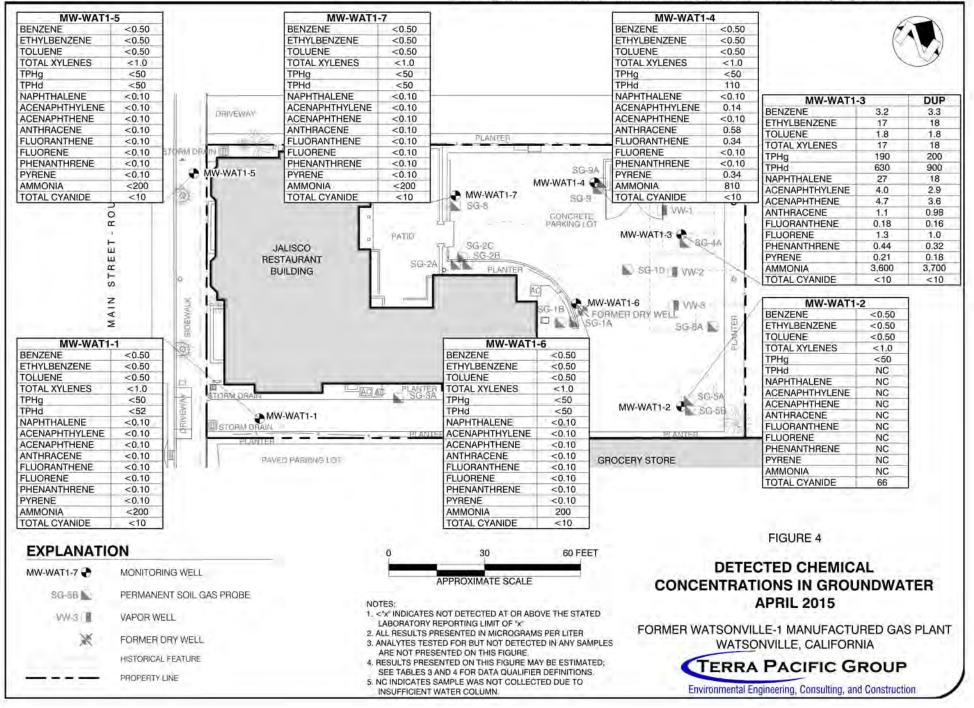
Probe Group	1						SG-9						
Probe Location ID		SG-9A	I					SG	-9	-	-		
Sample Depth (feet bgs)	10	10	10	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
EPA Analytical Method	TO-15	TO-15	TO-15	8260B	8260B	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	10/24/11	11/8/12	4/8/14	10/12/09	4/26/10	DUP 4/26/10	10/13/10	6/27/11	10/4/11	11/8/12	4/19/13	10/15/13	4/8/14
TPHg	NS	NS	NS	6.2	5.58	6.52	NS	3.7	NS	1.1	ND (0.22)	ND (0.25)	NS
1,2,4-Trichlorobenzene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.034)	NS	ND (0.036)	ND (0.032)	ND (0.036)	NS
1,2,4-Trimethylbenzene	NS	NS	NS	ND (0.008)	0.229	0.251	NS	ND (0.0056)	NS	0.0090	0.0064	ND (0.0060)	NS
1,3,5-Trimethylbenzene	NS	NS	NS	ND (0.008)	0.070	0.085	NS	ND (0.0056)	NS	ND (0.0060)	ND (0.0054)	ND (0.0060)	NS
1,3-Butadiene	NS	NS	NS	NA	NA	NA	NS	ND (0.0025)	NS	ND (0.0027)	ND (0.0024)	ND (0.0027)	NS
2,2,4-Trimethylpentane	NS	NS	NS	NA	NA	NA	NS	ND (0.0053)	NS	ND (0.0057)	ND (0.0051)	ND (0.0057)	NS
2-Butanone (MEK)	NS	NS	NS	NA	NA	NA	NS	ND (0.014)	NS	ND (0.014)	ND (0.013)	ND (0.014)	NS
4-Ethyltoluene	NS	NS	NS	NA	NA	NA	NS	0.0088	NS	0.0070	ND (0.0054)	ND (0.0060)	NS
4-Isopropyltoluene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	NA	NS	NA	NA	NA	NS
Acetone	NS	NS	NS	NA	NA	NA	NS	0.012 UN	NS	ND (0.029)	ND (0.026)	ND (0.029)	NS
Benzene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	0.0062	NS	ND (0.0039)	ND (0.0035)	ND (0.0039)	NS
Bromodichloromethane	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0077)	NS	ND (0.0082)	ND (0.0073)	ND (0.0081)	NS
n-Butylbenzene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	NA	NS	NA	NA	NA	NS
sec-Butylbenzene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	NA	NS	NA	NA	NA	NS
tert-Butylbenzene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	NA	NS	NA	NA	NA	NS
Carbon disulfide	NS	NS	NS	NA	NA	NA	NS	ND (0.014)	NS	ND (0.015)	ND (0.014)	ND (0.015)	NS
Carbon tetrachtoride	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0072)	NS	ND (0.0077)	ND (0.0069)	ND (0.0076)	NS
Chloroform	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0056)	NS	ND (0.0060)	ND (0.0053)	ND (0.0059)	NS
Cyclohexane	NS	NS	NS	NA	NA	NA	NS	0.020	NS	ND (0.0042)	ND (0.0038)	ND (0.0042)	NS
Dichlorodifluoromethane (Freon 12)	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0057)	NS	ND (0.0060)	ND (0.0054)	ND (0.0060)	NS
Ethanol	NS	NS	NS	NA	NA	NA	NS	ND (0.0086)	NS	0.011	0.038 UN	ND (0.0092)	NS
Ethylbenzene	NS	NS	NS	ND (0.008)	0.022	0.011	NS	0.017	NS	0.011	ND (0.0048)	ND (0.0053)	NS
Heptane	NS	NS	NS	NA	NA	NA	NS	0.036	NS	ND (0.0050)	ND (0.0045)	ND (0.0050)	NS
Hexane	NS	NS	NS	NA	NA.	NA	NS	0.014	NS	ND (0.0043)	ND (0.0038)	ND (0.0043)	NS
Isopropylbenzene (Cumene)	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	0.029	NS	ND (0.0060)	ND (0.0054)	ND (0.0060)	NS
Methylene chloride	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0040)	NS	ND (0.042)	ND (0.038)	ND (0.042)	NS
Naphthalene	NS	NS	NS	ND (0.008)	0.195	0.170	NS	ND (0.024)	NS	ND (0.026)	ND (0.023)	ND (0.025)	NS
n-Propylbenzene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	0.0095	NS	ND (0.0060)	ND (0.0054)	ND (0.0060)	NS
Styrene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0049)	NS	ND (0.0052)	ND (0.0047)	ND (0.0052)	NS
Tetrachloroethene	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0078)	NS	ND (0.0083)	ND (0.0074)	ND (0.0082)	NS
Toluene	NS	NS	NS	ND (0.008)	0.340	0.371	NS	0.013	NS	0.018	ND (0.0041)	ND (0.0046)	NS
Trichlorofluoromethane (Freon 11)	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0064)	NS	ND (0.0068)	ND (0.0062)	ND (0.0068)	NS
Vinyl Chloride	NS	NS	NS	ND (0.008)	ND (0.008)	ND (0.008)	NS	ND (0.0029)	NS	ND (0.0031)	ND (0.0028)	ND (0.0031)	NS
m,p-Xylene	NS	NS	NS	NA	NA	NA	NS	0.047	NS	0.047	0.0052	ND (0.0053)	NS
o-Xylene	NS	NS	NS	NA	NA	NA	NS	0.028	NS	0.018	ND (0.0048)	ND (0.0053)	NS
Xylenes (total)	NS	NS	NS	ND (0.007)	1.79	1.88	NS	NA	NS	NA	NA	NA	NS
Other VOCs	NS	NS	NS	ND	ND	ND	NS	ND	NS	NS	ND	ND	NS

Probe Group	S	G-9	1					SG-10					
Probe Location ID	S	G-9						SG-10	-				
Sample Depth (feet bgs)	14.5	14.5	5	5	5	5	5	5	5	5	5	5	5
EPA Analytical Method	TO-15	TO-15	8260B	8260B	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	10/8/14	4/15/15	10/12/09	4/26/10	10/13/10	DUP 10/13/10	6/27/11	REP 6/27/11	10/24/11	11/8/12	4/19/13	10/16/13	4/9/14
TPHg	ND (0.24)	ND (0.49)	1.26	3.22	1,480	1,300	ND (0.25)	ND (0.25)	ND (0.16)	ND (0.24)	0.47	ND (0.24)	ND (0.24)
1.2.4-Trichlorobenzene	ND (0.035)	ND (0.036)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.037)	ND (0.037)	ND (0.024)	ND (0.034)	ND (0.033)	ND (0.035)	ND (0.035)
1,2,4-Trimethylbenzene	ND (0.0059)	ND (0.0059)	0.113	0.092	43.5	39.8	ND (0.0061)	ND (0.0061)	ND (0.0039)	ND (0.0056)	0.0090	ND (0.0058)	ND (0.0058
1,3,5-Trimethylbenzene	ND (0.0059)	ND (0.0059)	0.030	ND (0.008)	24.5	21.9	ND (0.0061)	ND (0.0061)	ND (0.0039)	ND (0.0056)	ND (0.0054)	ND (0.0058)	ND (0.0058
1.3-Butadiene	ND (0.0026)	ND (0.0027)	NA	NA	NA	NA	ND (0.0027)	ND (0.0027)	ND (0.0018)	ND (0.0025)	ND (0.0024)	ND (0.0026)	ND (0.0026
2,2,4-Trimethylpentane	ND (0.0056)	ND (0.0056)	NA	NA	NA	NA	ND (0.0058)	ND (0.0058)	ND (0.0037)	ND (0.0054)	ND (0.0052)	0.035	ND (0.0055
2-Butanone (MEK)	ND (0.014)	ND (0.014)	NA	NA	NA	NA	ND (0.014)	ND (0.014)	ND (0.0094)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.014)
4-Ethyltoluene	ND (0.0059)	ND (0.0059)	NA	NA	NA	NA	ND (0.0061)	ND (0.0061)	ND (0.0039)	ND (0.0056)	0.0073	ND (0.0058)	ND (0.0058
4-Isopropyltoluene	NA	NA	0.090	ND (0.008)	ND (0.008)	ND (0.4)	NA	NA	NA	NA	NA	NA	NA
Acetone	ND (0.028)	0.044	NA	NA	NA	NA	ND (0.012)	ND (0.012)	ND (0.0076)	ND (0.027)	0.027	ND (0.028)	ND (0.028)
Benzene	ND (0.0038)	ND (0.0038)	0.050	ND (0.008)	0,580	0.500	ND (0.0039)	ND (0.0039)	ND (0.0026)	ND (0.0037)	ND (0.0035)	ND (0.0038)	ND (0.0038
Bromodichloromethane	ND (0.0080)	ND (0.0081)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0083)	ND (0.0083)	ND (0.0054)	ND (0.0077)	ND (0.0074)	ND (0.0079)	ND (0.0079
n-Butylbenzene	NA	NA	0.060	ND (0.008)	ND (0.008)	ND (0.4)	NA.	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	0.120	ND (0.008)	ND (0.008)	ND (0.4)	NA	NA	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	NA	NA	NA	NA	NA	NA	NA
Carbon disulfide	ND (0.015)	ND (0.015)	NA	NA	NA	NA	ND (0.015)	ND (0.015)	ND (0.010)	ND (0.014)	ND (0.014)	ND (0.015)	ND (0.015)
Carbon tetrachtoride	ND (0.0075)	ND (0.0076)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0078)	ND (0.0078)	ND (0.0050)	ND (0.0072)	ND (0.0070)	ND (0.0074)	ND (0.0074
Chloroform	ND (0.0058)	ND (0.0059)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0060)	ND (0.0060)	ND (0.0039)	ND (0.0056)	ND (0.0054)	ND (0.0058)	0.0069
Cyclohexane	ND (0.0041)	ND (0.0041)	NA	NA	NA	NA	ND (0.0042)	ND (0.0042)	ND (0.0028)	ND (0.0040)	0.0055	ND (0.0041)	ND (0.0041
Dichlorodifluoromethane (Freon 12)	ND (0.0059)	ND (0.0060)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0061)	ND (0.0061)	ND (0.0040)	ND (0.0057)	ND (0.0055)	ND (0.0059)	ND (0.0058
Ethanol	ND (0.0090)	ND (0.0091)	NA	NA	NA	NA	ND (0.0093)	ND (0.0093)	ND (0.0060)	ND (0.0087)	0.18	ND (0.0089)	ND (0.0089
Ethylbenzene	ND (0.0052)	ND (0.0052)	0.201	0.283	152	132	ND (0.0054)	ND (0.0054)	ND (0.0035)	ND (0.0050)	ND (0.0048)	ND (0.0051)	ND (0.0051
Heptane	ND (0.0049)	ND (0.0049)	NA	NA	NA	NA	ND (0.0051)	ND (0.0051)	ND (0.0033)	ND (0.0047)	ND (0.0045)	0.011	ND (0.0048
Hexane	ND (0.0042)	ND (0.0042)	NA	NA	NA	NA	ND (0.0044)	ND (0.0044)	ND (0.0028)	ND (0.0040)	ND (0.0039)	0.014	ND (0.0042
Isopropylbenzene (Cumene)	ND (0.0059)	ND (0.0059)	0.024	ND (0.008)	3.95	2.66	ND (0.0061)	ND (0.0061)	ND (0.0039)	ND (0.0056)	ND (0.0054)	ND (0.0058)	ND (0.0058
Methylene chloride	ND (0.042)	ND (0.042)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0,4)	0.0056 UN	0.0050 UN	ND (0.0028)	ND (0.040)	ND (0.038)	ND (0.041)	ND (0.041
Naphthalene	ND (0.025)	ND (0.025)	ND (0.008)	ND (0.008)	18.5	22.5	ND (0.026)	ND (0.026)	ND (0.017)	ND (0.024)	ND (0.023)	ND (0.025)	ND (0.025
n-Propylbenzene	ND (0.0059)	ND (0.0059)	ND (0.008)	ND (0.008)	2.69	2.03	ND (0.0061)	ND (0.0061)	ND (0.0039)	ND (0.0056)	ND (0.0054)	ND (0.0058)	ND (0.0058
Styrene	ND (0.0051)	ND (0.0051)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0053)	ND (0.0053)	ND (0.0034)	ND (0.0049)	ND (0.0047)	ND (0.0050)	ND (0.0050
Tetrachloroethene	ND (0.0081)	ND (0.0082)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0084)	ND (0.0084)	ND (0.0054)	ND (0.0078)	ND (0.0075)	ND (0.0080)	ND (0.0080
Toluene	ND (0.0045)	ND (0.0045)	0.129	0.290	60.3	54.6	ND (0.0046)	ND (0.0046)	ND (0.0030)	ND (0.0043)	0.020	ND (0.0045)	ND (0.0044
Trichlorofluoromethane (Freon 11)	ND (0.0043)	ND (0.0043)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0048)	ND (0.0048)	ND (0.0030)	ND (0.0043)	ND (0.0062)	ND (0.0045)	ND (0.0066
Vinyl Chloride	ND (0.0087)	ND (0.0088)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.4)	ND (0.0089) ND (0.0032)	ND (0.0089)	ND (0.0045)	ND (0.0065)	ND (0.0082)	ND (0.0080)	ND (0.0080
m,p-Xylene	ND (0.0030) ND (0.0052)	ND (0.0031)	ND (0.008) NA	ND (0.008) NA	ND (0.008) NA	ND (0,4) NA	ND (0.0032) ND (0.0054)	ND (0.0032) ND (0.0054)	ND (0.0020)	ND (0.0029)	0.015	ND (0.0030) ND (0.0051)	ND (0.005
o-Xylene		ND (0.0052)	NA	NA	NA	NA	ND (0.0054)	ND (0.0054)		ND (0.0050)	0.015	ND (0.0051)	and the second se
Xylenes (total)	ND (0.0052) NA	ND (0.0052) NA	0.291	0.963	360	322	ND (0.0054) NA	ND (0.0054) NA	ND (0.0035) NA	ND (0.0050) NA	0.0053 NA	ND (0.0051) NA	ND (0.0051 NA
Other VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

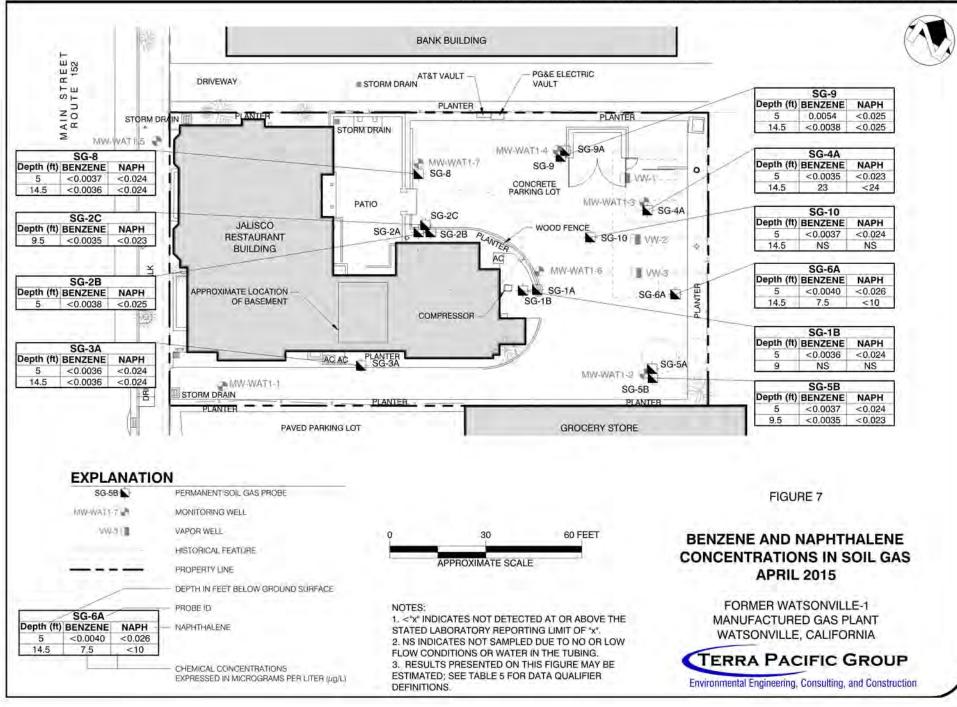
Probe Group	<u></u>						SG	-10						
Probe Location ID							SG	i-10	Contraction The					
Sample Depth (feet bgs)	5	5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
EPA Analytical Method	TO-15	TO-15	8260B	8260B	8260B	8260B	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
Sample Date	10/9/14	4/16/15	10/12/09	DUP 10/12/09	4/26/10	10/13/10	6/27/11	10/24/11	11/18/12	4/19/13	10/16/13	4/9/14	10/9/14	4/16/15
TPHg	ND (0.24)	ND (0.47)	4.03	4.55	2,77	10.2	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene	ND (0.035)	ND (0.034)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene	ND (0.0058)	ND (0.0056)	ND (0.02)	ND (0.008)	ND (0.008)	0.552	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	ND (0.0058)	ND (0.0056)	ND (0.02)	ND (0.008)	ND (0.008)	0.090	NS	NS	NS	NS	NS	NS	NS	NS
1,3-Butadiene	ND (0.0026)	ND (0.0025)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
2,2,4-Trimethylpentane	ND (0.0056)	ND (0.0054)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
2-Butanone (MEK)	ND (0.014)	ND (0.014)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
4-Ethyltoluene	ND (0.0058)	ND (0.0056)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
4-Isopropyltoluene	NA	NA	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	ND (0.028)	ND (0.027)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Benzene	ND (0.0038)	ND (0.0037)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Bromodichloromethane	ND (0.0080)	ND (0.0077)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
n-Butylbenzene	NA	NA	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	NA	NA	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
tert-Butylbenzene	NA	NA	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Carbon disulfide	ND (0.015)	ND (0.014)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Carbon tetrachloride	ND (0.0075)	ND (0.0072)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Chloroform	0.025	0.012	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Cyclohexane	ND (0.0041)	ND (0.0040)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Dichlorodifluoromethane (Freon 12)	ND (0.0059)	ND (0.0057)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Ethanol	ND (0.0090)	ND (0.0087)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Ethylbenzene	ND (0.0052)	ND (0.0050)	ND (0.02)	ND (0.008)	ND (0.008)	0.357	NS	NS	NS	NS	NS	NS	NS	NS
Heptane	ND (0.0049)	ND (0.0047)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Hexane	ND (0.0042)	ND (0.0040)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Isopropylbenzene (Cumene)	ND (0.0058)	ND (0.0056)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Methylene chloride	ND (0.041)	ND (0.040)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Naphthalene	ND (0.025)	ND (0.024)	ND (0.02)	ND (0.008)	0.034	1.73	NS	NS	NS	NS	NS	NS	NS	NS
n-Propylbenzene	ND (0.0058)	ND (0.0056)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Styrene	ND (0.0051)	ND (0.0049)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Tetrachloroethene	ND (0.0081)	ND (0.0078)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Toluene	ND (0.0045)	ND (0.0043)	ND (0.02)	ND (0.008)	0.201	0.113	NS	NS	NS	NS	NS	NS	NS	NS
Trichlorofluoromethane (Freon 11)	ND (0.0043)	ND (0.0045)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
Vinyl Chloride	ND (0.0030)	ND (0.0083)	ND (0.02)	ND (0.008)	ND (0.008)	ND (0.008)	NS	NS	NS	NS	NS	NS	NS	NS
m.p-Xvlene	ND (0.0052)	ND (0.0029)	ND (0.02) NA	ND (0.008)	ND (0.008)	NA NA	NS	NS	NS	NS	NS	NS	NS	NS
o-Xylene	ND (0.0052)	ND (0.0050)	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS
Xylenes (total)	ND (0.0052) NA	ND (0.0050) NA	0.205	0.191	0.771	1.07	NS	NS	NS	NS	NS	NS	NS	NS
Other VOCs	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS

Notes:

Analytical results are presented in micrograms per liter (ug/L).


"ND (##)" indicates the consitituent was not detected at or above the laboratory reporting limit.

On 2/12/08 and 2/13/08, a purge test was conducted on soil gas samples collected from 15 feet at probe SG-7. Sample volumes were collected at 1, 3 and 7 volumes (1P, 3P and 7P, respectively). The highest concentrations for the compounds of interest were detected in the 1-purge-volume sample. As a result, soil gas samples from all remaining probes were collected after purging 1 volume of air. On 10/12/09, a purge test was conducted on soil gas samples collected from 5 feet and 15 feet at probe SG-6A. Sample volumes were collected at 1, 3 and 10 volumes (1P, 3P and 10P, respectively). The highest concentrations for the compounds of interest were detected in the 3-purge-volume and 10-purge-volume samples, respectively. As a result, soil gas samples from all remaining probes were collected after purging 3 volumes of air for the 5-foot samples and 10 volumes of air for the 9-foot or 15-foot samples. On 4/26/10, a purge test was conducted on soil gas samples collected from 5 feet and 15 feet at probe SG-4A. Sample volumes ware collected at 1, 3 and 10 volumes (1P, 3P and 10P, respectively). The highest concentrations for the compounds of interest were detected in the 3-purge-volume and 10-purge-volume samples, respectively. As a result, soil gas samples from all remaining probes were collected after purging 3 volumes of air for the 5-foot samples and 10 volumes of air for the 9-foot or 15-foot samples On 10/13/10, a purge test was conducted on soil gas samples collected from 5 feet and 15 feet at probe SG-4A. Sample volumes were collected at 1, 3, 7 and 10 volumes (1P, 3P, 7P and 10P, respectively). The highest concentrations for the compounds of interest were detected in the 3-purge-volume samples. As a result, soil gas samples from all remaining probes were collected after purging 3 volumes of air. Samples taken since June 2011 were collected after purging 3 volumes of air per the TO-15 Method guidance. CONF = confirmation sample DUP = duplicate sample REP = replicate sample NA = not analyzed TPHg = Total petroleum hydrocarbons quantified as gasoline VOC = volatile organic compound EPA = United States Environmental Protection Agency JA = estimated value because of interference by non-target compounds J- = Estimated value with a potential low bias. J = estimated value; analyte detected at a concentration less than the reporting limit and greater than or equal to the method detection limit J+ = estimated value; analyte detected at a concentration between 5 and 20 times the value detected in the associated field blank. UN = Result is estimated due to possible contamination in the field QC blanks. Result is less than five times the amount reported in the blank(s). NS = Not sampled due to no or low flow conditions or shallow water in probe tubing. E = Exceeds instrument calibration range. UJ = Non-detected compound associated with low bias in the CCV and/or LCS 1 = Bromomethane (USEPA Method TO-15) 2 = Chloroethane (USEPA Method TO-15)


- 3 = Chlorobenzene (USEPA Method TO-15)
- 4 = Tetrahydrofuran (USEPA Method TO-15)
- 5 = 1,4-Dioxane (USEPA Method TO-15)
- 6 = Trichloroethene (USEPA Method TO-15)
- 7 = 2-Propanol (USEPA Method TO-15)
- 8 = Methyl tert-butyl ether (USEPA Method TO-15)

Pt/Drafting/Projects/PGE-1012/GW Rpt April 2015/001-PGE-1012-GW Rpt April 2015-DATA in GW 4-2015-Fig4.dwg 6/24/2015 12:34:56 PM PST

Pt/Drafting/Projects/PGE-1012/GW Rpt April 2015/003-PGE-1012-GW Rpt April 2015-Benz Naph Soil Gas April 2015-Fig7.dwg 5/11/2015 12:34:56 PM PST

Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

Table and Figure - Residual Soil PAHs (Post Removal Action)

Final Removal Action Completion Report, Terra Pacific Group, dated October 27, 2011.

WEBER, HAYES & ASSOCIATES

	Sample Depth	Sample	Benzo(a)pyrene Equivalent ^b
Sample ID ^a	(ft bgs)	Date	(mg/kg)
B-WAT1-1-10-11.5	11.5	6/23/1991	0.069
B-WAT1-1-15-16.5	16.5	6/23/1991	0.067
B-WAT1-1-3.5-5	5	6/23/1991	0.068
B-WAT1-2-1-10	10.0	3/13/2001	0.0055
B-WAT1-2-1-15	15.0	3/13/2001	0.0055
B-WAT1-2-1-6.5	6.5	3/13/2001	0.0055
B-WAT1-3-1-10	10.0	3/13/2001	0.0055
B-WAT1-3-1-15	15.0	3/13/2001	0.0055
B-WAT1-3-1-6.5	6.5	3/13/2001	0.0055
DSS-WAT1-1	0.0	6/24/1991	0.24
DSS-WAT1-4	0.0	6/24/1991	0.30
GP1-10-10.5	10.5	5/11/2004	0.43
GP1-15-15.5	15.5	5/11/2004	21
GP1-2.5-3	3	5/11/2004	1.6
GP1-20-20.5	20.5	5/11/2004	0.75
GP1-24-24.5	24.5	5/11/2004	0.0029
GP1-5-5.5	5.5	5/11/2004	0.073
GP2-10-10.5	10.5	5/11/2004	0.0029
GP2-15-15.5	15.5	5/11/2004	1.6
GP2-2.5-3	3	5/11/2004	6.4
GP2-5-5.5	5.5	5/11/2004	1.1
GP3-10-10.5	10.5	5/11/2004	0.0029
GP3-15-15.5	15.5	5/11/2004	0.0029
GP3-2.5-3	3	5/11/2004	0.0033
GP3-20-20.5	20.5	5/11/2004	7.4
GP3-23.5-24	24	5/11/2004	0.0058
GP3-5-5.5	5.5	5/11/2004	0.0029
GP4-10-10.5	10.5	5/11/2004	3.4
GP4-15-15.5	15.5	5/11/2004	18
GP4-2.5-3	3	5/11/2004	1.0
GP4-20-20.5	20.5	5/11/2004	0.0029
GP4-23.5-24	24	5/11/2004	0.0029
GP4-5-5.5	5.5	5/11/2004	3.8
HA1-0-0.5	0.5	5/10/2004	0.61
HA10-0-0.5	0.5	5/10/2004	0.32
HA10-1.5-2	2	5/10/2004	0.087
HA10-2.5-3	3	5/10/2004	0.017
HA1-2.5-3	3	5/10/2004	0.0087
HA1-4-4.5	4.5	5/10/2004	0.0029
HA2-0-0.5	0.5	5/10/2004	1.3
HA2-1-1.5	1.5	5/10/2004	0.010
HA2-2.5-3	3	5/10/2004	0.0036

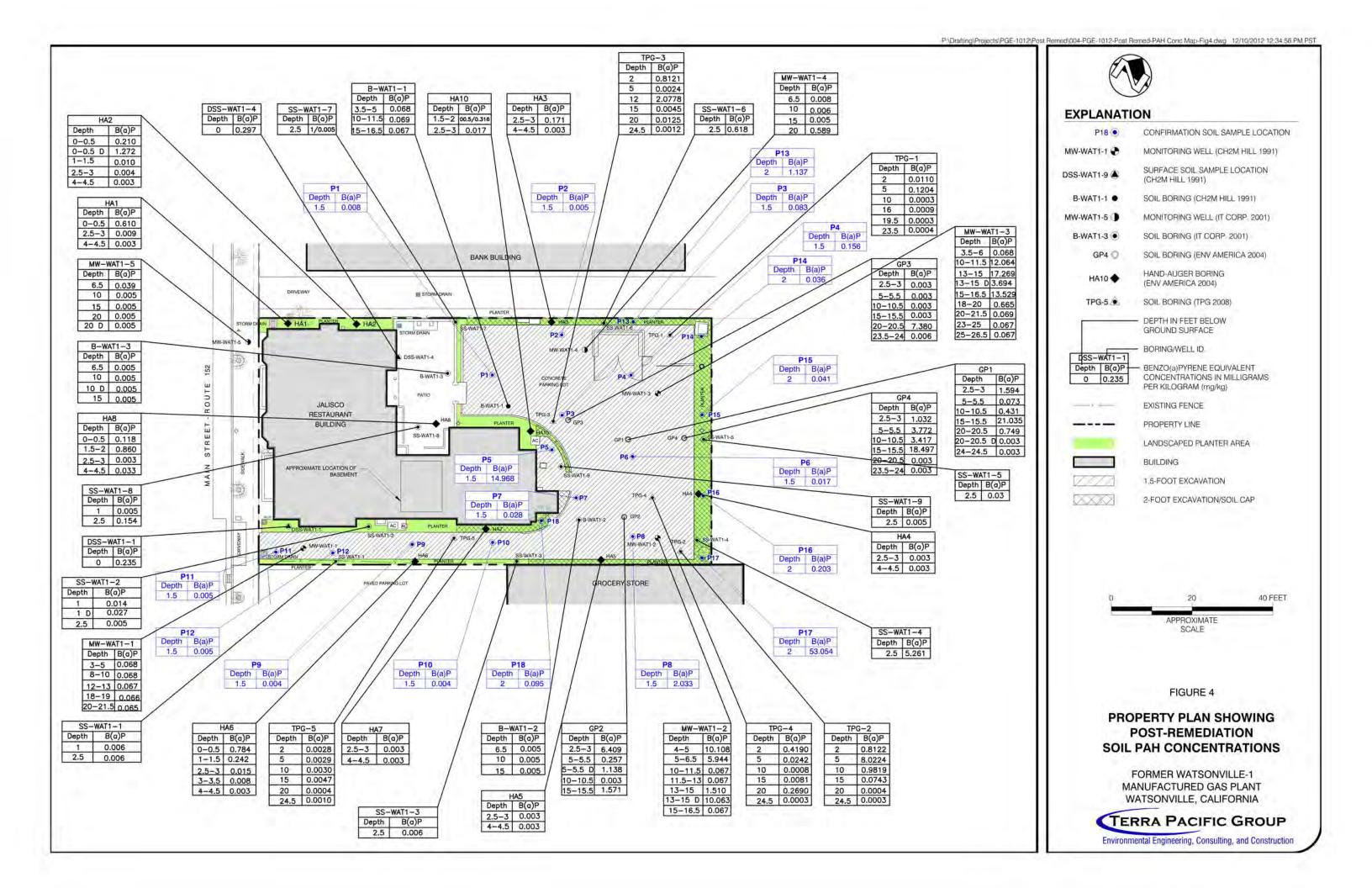
Sample ID ^a	Sample Depth	Sample	Benzo(a)pyrene Equivalent ^b
HA2-4-4.5	(ft bgs) 4.5	Date 5/10/2004	(mg/kg) 0.0029
HA2-4-4.5 HA3-2.5-3	4.5	5/10/2004	0.0029
HA3-2.5-3 HA3-4-4.5	4.5	5/10/2004	0.0029
HA4-2.5-3	4.5	5/10/2004	0.0029
HA4-2.5-5	4.5	5/10/2004	0.0029
HA5-2.5-3	4.5	5/10/2004	0.0029
HA5-2.5-5 HA5-4-4.5	4.5	5/10/2004	0.0029
HA6-0-0.5	0.5	5/10/2004	0.0029
HA6-1-1.5	1.5	5/10/2004	0.24
	3		0.24
HA6-2.5-3	3.5	5/10/2004	
HA6-3-3.5 HA6-4-4.5	3.5 4.5	5/10/2004	0.0084
		5/10/2004	0.0029 0.0029
HA7-2.5-3	3	5/10/2004	0.0029
HA7-4-4.5	4.5	5/10/2004	
HA8-0-0.5	0.5	5/10/2004	0.12
HA8-1.5-2	2 3	5/10/2004	0.86
HA8-2.5-3 HA8-4-4.5		5/10/2004	0.0029
MW-WAT1-1-12-13	4.5	5/10/2004	0.033
	13.0	6/22/1991	0.067
MW-WAT1-1-18-19	19.0	6/22/1991	0.066
MW-WAT1-1-20-21.5	21.5	6/22/1991	0.065
MW-WAT1-1-3-5	5.0	6/22/1991	0.068
MW-WAT1-1-8-10	10.0	6/22/1991	0.068
MW-WAT1-2-10-11.5	11.5	6/23/1991	0.067
MW-WAT1-2-11.5-13	13	6/23/1991	0.067
MW-WAT1-2-13-15	15	6/23/1991	10
MW-WAT1-2-15-16.5	16.5	6/23/1991	0.067
MW-WAT1-2-4-5	5.0	6/23/1991	10
MW-WAT1-2-5-6.5	6.5	6/23/1991	5.9
MW-WAT1-3-10-11.5	11.5	6/24/1991	12
MW-WAT1-3-13-15	15	6/24/1991	17
MW-WAT1-3-15-16.5	16.5	6/24/1991	14
MW-WAT1-3-18-20	20	6/24/1991	0.67
MW-WAT1-3-20-21.5	21.5	6/24/1991	0.069
MW-WAT1-3-23-25	25	6/24/1991	0.067
MW-WAT1-3-25-26.5	26.5	6/24/1991	0.067
MW-WAT1-3-3.5-6	6	6/24/1991	0.068
MW-WAT1-4-1-10	10.0	3/13/2001	0.0058
MW-WAT1-4-1-15	15.0	3/13/2001	0.0055
MW-WAT1-4-1-20	20.0	3/13/2001	0.59
MW-WAT1-4-1-6.5	6.5	3/13/2001	0.0078
MW-WAT1-5-1-10	10.0	3/14/2001	0.0055

	Sample Depth	Sample	Benzo(a)pyrene Equivalent ^b
Sample ID ^a	(ft bgs)	Date	(mg/kg)
MW-WAT1-5-1-15	15.0	3/14/2001	0.0055
MW-WAT1-5-1-20	20.0	3/14/2001	0.0055
MW-WAT1-5-1-6.5	6.5	3/14/2001	0.039
P1-1.5	1.5	3/13/2012	0.0080
P2-1.5	1.5	3/13/2012	0.0050
P3-1.5	1.5	3/13/2012	0.083
P4-1.5	1.5	3/22/2012	0.16
P5-1.5	1.5	3/22/2012	15
P6-1.5	1.5	3/22/2012	0.017
P7-1.5	1.5	3/29/2012	0.028
P8-1.5	1.5	3/29/2012	2.0
P9-1.5	1.5	4/2/2012	0.0040
P10-1.5	1.5	4/2/2012	0.0040
P11-1.5	1.5	4/3/2012	0.0050
P12-1.5	1.5	4/3/2012	0.0050
P13-2	2.0	4/19/2012	1.1
P14-2	2.0	4/19/2012	0.036
P15-2	2.0	4/19/2012	0.041
P16-2	2.0	4/19/2012	0.20
P17-2	2.0	4/19/2012	53
P18-2	2.0	4/25/2012	0.095
SS-WAT1-0401	2.5	3/26/2001	5.3
SS-WAT1-0501	2.5	3/26/2001	0.030
SS-WAT1-1-1-12"	1.0	3/14/2001	0.0060
SS-WAT1-1-1-30"	2.5	3/14/2001	0.0060
SS-WAT1-2-1-30"	2.5	3/14/2001	0.0055
SS-WAT1-2-2-12"	1.0	3/14/2001	0.027
SS-WAT1-3-1-30"	2.5	3/14/2001	0.0060
SS-WAT1-6-1-30"	2.5	3/14/2001	0.62
SS-WAT1-7-1-12"	1.0	3/14/2001	0.0050
SS-WAT1-7-1-30"	2.5	3/14/2001	0.0090
SS-WAT1-8-1-12"	1.0	3/14/2001	0.0050
SS-WAT1-8-1-30"	2.5	3/14/2001	0.15
SS-WAT1-9-1-30"	2.5	3/14/2001	0.0050
TPG-1-10	10.0	2/13/2008	0.00032
TPG-1-16	16.0	2/13/2008	0.00091
TPG-1-19.5	19.5	2/13/2008	0.00034
TPG-1-2	2.0	2/13/2008	0.011
TPG-1-23.5	23.5	2/13/2008	0.00036
TPG-1-5	5.0	2/13/2008	0.12
TPG-2-10	10.0	2/13/2008	0.98
TPG-2-15	15.0	2/13/2008	0.074

Sample ID ^a	Sample Depth (ft bgs)	Sample Date	Benzo(a)pyrene Equivalent ^b (mg/kg)
TPG-2-2	2.0	2/13/2008	0.81
TPG-2-20	20.0	2/13/2008	0.00037
TPG-2-24.5	24.5	2/13/2008	0.00034
TPG-2-5	5.0	2/13/2008	8.0
TPG-3-12	12.0	2/12/2008	2.1
TPG-3-15	15.0	2/12/2008	0.0045
TPG-3-2	2.0	2/12/2008	0.81
TPG-3-20	20.0	2/12/2008	0.013
TPG-3-24.5	24.5	2/12/2008	0.0012
TPG-3-5	5.0	2/12/2008	0.0024
TPG-4-10	10.0	2/13/2008	0.00080
TPG-4-15	15.0	2/13/2008	0.0081
TPG-4-2	2.0	2/13/2008	0.42
TPG-4-20	20.0	2/13/2008	0.27
TPG-4-24.5	24.5	2/13/2008	0.00029
TPG-4-5	5.0	2/13/2008	0.024
TPG-5-10	10.0	2/13/2008	0.0030
TPG-5-15	15.0	2/13/2008	0.0047
TPG-5-2	2.0	2/13/2008	0.0028
TPG-5-20	20.0	2/13/2008	0.00039
TPG-5-24.5	24.5	2/13/2008	0.00098
TPG-5-5	5.0	2/13/2008	0.0029

Notes:

mg/kg = milligrams per kilogram


ft = feet

bgs = below ground surface

CPAH = Carcinogenic Polycyclic Aromatic Hydrocarbons (expressed in benzo(a)pyrene equivalents)

^a Higher benzo(a)pyrene equivalent value from the primary or duplicate sample is included in the

^b Values in bold and italics are based on non-detects for all seven carcinogenic polycyclic aromatic

Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

Table – Risk-Based Soil Gas Screening Levels

Draft Screening Levels for Chemicals in Soil Gas, Sub-Slab Soil Gas, and Indoor Air, Iris Environmental, dated September 29, 2009.

Table 8. Risk-based Soil Gas Screening Levels

	Basement Scenario					Slab-on-grade Scenario						
	Scre	Screening Level at 10 ft bgs		Screening Level at 15 ft bgs		Screening Level at 5 ft bgs			Screening Level at 15 ft bgs			
Chemical of Potential Concern	Cancer	Noncancer	Controlling	Cancer	Noncancer (µg/m ³)	Controlling	Cancer	Noncancer	Controlling	Cancer (µg/m ³)	Noncancer	Controlling
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$		$(\mu g/m^3)$	$(\mu g/m^3)$
Total Petroleum Hydrocarbons (TPH)												
C5-C8 Aliphatic	NC	1.2E+06	1.2E+06	NC	2.6E+06	2.6E+06	NC	2.1E+06	2.1E+06	NC	4.8E+06	4.8E+06
C9-C18 Aliphatic	NC	5.3E+05	5.3E+05	NC	1.1E+06	1.1E+06	NC	8.8E+05	8.8E+05	NC	2.0E+06	2.0E+06
C9-C16 Aromatic	NC	8.9E+04	8.9E+04	NC	1.8E+05	1.8E+05	NC	1.5E+05	1.5E+05	NC	3.4E+05	3.4E+05
TPH-g	NC	5.2E+05	5.2E+05	NC	1.1E+06	1.1E+06	NC	8.5E+05	8.5E+05	NC	2.0E+06	2.0E+06
Volatile Organic Compounds (VOCs)												
Acetone	NC	5.5E+07	5.5E+07	NC	1.0E+08	1.0E+08	NC	8.0E+07	8.0E+07	NC	1.8E+08	1.8E+08
Benzene	1.7E+03	5.3E+04	1.7E+03	3.8E+03	1.2E+05	3.8E+03	3.1E+03	9.5E+04	3.1E+03	7.3E+03	2.3E+05	7.3E+03
2-Butanone (methyl ethyl ketone)	NC	8.9E+06	8.9E+06	NC	2.0E+07	2.0E+07	NC	1.7E+07	1.7E+07	NC	4.0E+07	4.0E+07
Carbon disulfide	NC	1.2E+06	1.2E+06	NC	2.5E+06	2.5E+06	NC	2.0E+06	2.0E+06	NC	4.6E+06	4.6E+06
Cumene	NC	7.1E+05	7.1E+05	NC	1.9E+06	1.9E+06	NC	1.5E+06	1.5E+06	NC	3.9E+06	3.9E+06
Dichlorodifluoromethane (Freon 12)	NC	3.6E+05	3.6E+05	NC	9.2E+05	9.2E+05	NC	7.6E+05	7.6E+05	NC	1.9E+06	1.9E+06
Ethylbenzene	2.0E+04	1.8E+06	2.0E+04	4.8E+04	4.3E+06	4.8E+04	3.9E+04	3.5E+06	3.9E+04	9.7E+04	8.7E+06	9.7E+04
4-Ethyltoluene	NC	1.8E+05	1.8E+05	NC	4.5E+05	4.5E+05	NC	3.7E+05	3.7E+05	NC	9.4E+05	9.4E+05
Methylene chloride	5.0E+04	7.1E+05	5.0E+04	1.0E+05	1.5E+06	1.0E+05	8.2E+04	1.2E+06	8.2E+04	1.9E+05	2.7E+06	1.9E+05
Naphthalene	1.5E+03	5.3E+03	1.5E+03	4.1E+03	1.5E+04	4.1E+03	3.4E+03	1.2E+04	3.4E+03	8.8E+03	3.2E+04	8.8E+03
Styrene	NC	1.6E+06	1.6E+06	NC	4.0E+06	4.0E+06	NC	3.3E+06	3.3E+06	NC	8.2E+06	8.2E+06
Toluene	NC	5.3E+05	5.3E+05	NC	1.2E+06	1.2E+06	NC	9.6E+05	9.6E+05	NC	2.3E+06	2.3E+06
Trichlorofluoromethane (Freon 11)	NC	1.2E+06	1.2E+06	NC	2.8E+06	2.8E+06	NC	2.2E+06	2.2E+06	NC	5.3E+06	5.3E+06
1,2,4-Trimethylbenzene	NC	1.2E+04	1.2E+04	NC	3.4E+04	3.4E+04	NC	2.8E+04	2.8E+04	NC	7.3E+04	7.3E+04
1,3,5-Trimethylbenzene	NC	1.1E+04	1.1E+04	NC	2.9E+04	2.9E+04	NC	2.4E+04	2.4E+04	NC	6.3E+04	6.3E+04
Xylenes	NC	1.8E+05	1.8E+05	NC	4.0E+05	4.0E+05	NC	3.2E+05	3.2E+05	NC	7.8E+05	7.8E+05

Notes:

(1) For the basement scenario, risk-based soil gas screening levels developed for soil gas depths of 10 feet bgs. These screening levels are appropriate for evaluating soil gas data collected at 5 and 15 feet bgs, respectively, at locations near the basement; the data collected near the basement at 5 feet bgs may be compared against the soil gas screening levels developed for 10 feet bgs. Note that this conservative approach also accounts for potential vapor intrusion through the sidewalls of the basement at 5 feet bgs.

(2) For the slab-on-grade scenario, risk-based soil gas screening levels developed for soil gas depths of 5 and 15 feet bgs. These screening levels are appropriate for evaluating soil gas data collected at 5 and 15 feet bgs, respectively, at locations away from the basement.

Table 8. Risk-based Soil Gas Screening Levels

	Basement Scenario					Slab-on-grade Scenario						
	Scre	ening Level at 10	ft bgs	Scre	ening Level at 15	ft bgs	Scr	eening Level at 5	ft bgs	Scre	ening Level at 15	ft bgs
Chemical of Potential Concern	Cancer	Noncancer	Controlling	Cancer	Noncancer	Controlling	Cancer	Noncancer	Controlling	Cancer	Noncancer	Controlling
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$

Notes (continued):

(3) Each risk-based soil gas screening level is calculated from 1) the risk-based target concentration of the chemical in indoor air (see Table 3) and 2) the appropriate J&E-modeled attenuation factor (see Table 7):

 $SL_{SG,c} = CA_c / \alpha$

 $SL_{SG,nc} = CA_{nc} / \alpha$

(4) Cancer-based screening levels are based on a target risk of 1x10⁻⁵. Noncancer-based screening levels are based on a target hazard quotient of 1.0.

(5) "NC" = noncarcinogenic.

(6) The noncancer-based soil gas screening level for TPH-g is calculated as a weighted average of the noncancer-based soil gas screening levels for the TPH-g subgroups by the following equation (see text for details):

$$SL_{SG, nc, TPH-g} = \frac{1}{\sum \frac{x_i}{SL_{SG, nc, i}}}$$

where:

 $SL_{SG,nc,TPH-g}$ = noncancer-based soil gas screening level for TPH-g ($\mu g/m^3$)

 x_i = mass fraction of TPH-g within subgroup *i* (unitless); and

 $SL_{SG,nc,i}$ = noncancer-based soil gas screening level for subgroup *i* (µg/m³)

Remedial Action Plan Completion Report 25 East Fifth Street, Watsonville January 2018 / Project: 2X404

APPENDIX C

FIELD DOCUMENTATION

SOIL VAPOR MONITORING WELL DESTRUCTION

Monitoring Well Destruction Permits

Field Notes

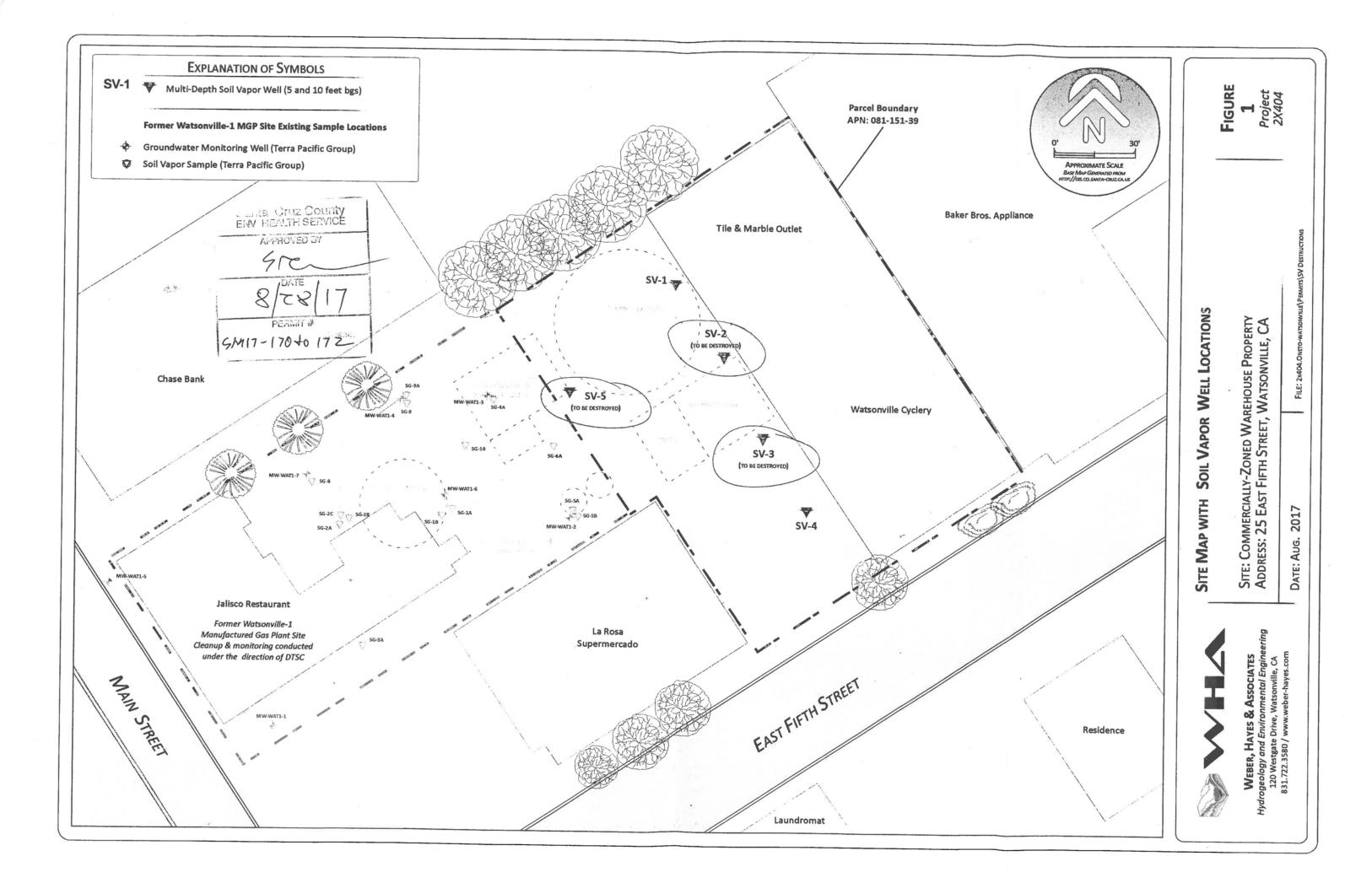
Photo Sheets

REMEDIAL EXCAVATION & SITE RESTORATION / CAPPING

City of Watsonville Grading Permit, Encroachment Permit & Building Permit

Field Notes

Photo Sheets


APPLICATION FOR SITE-MITIGATION-PROGRAM WELL PERMIT

New 🗌 Replacement 🗌 Sup	plemental 🔳 Destruction 🗌 Oth	er WELL NUMBER: SV-2
018-151-39		
Well APN	Site Mit Case APN (if diff.)	
Well Site Address 25 E. 5th Street, W	atsonville, CA	
Well Site Property Owner Phil & Martha	a Oneto Ad	dress (if diff.) 102 Carl Avenue, Santa Cruz, CA
Site Mit Case Address (if different)		
Consultant Weber, Hayes & Associat	Address 120 We	estgate Drive, Watsonville, CA 95076
Drilling Contractor Environmental Con		License # 695970 Phone 831.662.8178
	, Hayes & Associates, 120 Westgate Drive	Watsonville, CA 95076
Chaney	, nayes a Associates, 120 Westgate Divis	
WELL INFORMATION (Complete fe	or All Permit Applications)	
WELL TYPE (check all that apply)	WELL CONSTRUCTION METHOD	WELL SPECIFICATIONS
Groundwater Monitoring	Hollow Stem	Borehole Diameter (in.) (2.25)
Soil Gas Monitoring	Rotary	Depth of Borehole (ft.) (-10.5)
Remediation	Cable	Depth of Well (ft.) ~5 & 10 (Probe Tip)
Groundwater Extraction	Sonic	Cap, Lock, Vault Box: 🛛 Yes 🗌 No Seal Material(s)
Dual Phase Extraction	Direct Push	Depth of Seal (ft.) 3.5 & 8.5
Vapor Extraction		Cement Interval (ft.) 0.5-3.5 & 5.5-8.5
Air Sparge	WELL CASING SPECIFICATIONS Material Teflon tubing	Hydrated Bentonite Int. (ft.) NA
	Gauge or Wall Thickness	Dry Granular Bentonite Int. (ft.) 3.5-4.5 & 8.5-9.5
DISTANCE FROM WELL TO (ft.):	Internal Diameter (in.) 3/16	Other Seal Material Int. (ft.) n/a
Septic Systems n/a	Type of Joint NA	Filter Pack Material(s) #3 Sand
Sewer n/a	Perforation Interval (ft.) NA	Sand Interval (ft.) 4.5-5.5 & 9.5-10.5
Nearest Property Line ~25 feet	Perforation Size (in.) NA	Other Filter Pack Interval (ft.) n/a
WELL SETTING (Complete for all		
CONDITION OF OTHER WELLS ON I	(see attached for requirements)	nestic Irrigation Monitoring 2 4 Other Destroyed Other inal well construction log and a description of the proposed destruction method.
Proposed Destruction Method.		
		ENSATION INSURANCE FOR THE DRILLER IS ATTACHED OR ON FILE
SIGNEES CERTIFY THAT	IN THE PERFORMANCE OF THE WORK	FOR WHICH THIS PERMIT IS ISSUED SIGNEES SHALL NOT EMPLOY
ANY PERSON IN ANY MAI	NNER SO AS TO BECOME SUBJECT TO	
Signees agree to the following statemer	nts: I hereby agree to comply with all laws an	d regulations of the County of Santa Cruz and State of California pertaining to
		k performed. I understand this permit expires one year from date of issuance.
Signatures: WELL SITE PROP. OWNER	Joc: Own 8,22,17	DRILLING CONTRACTOR _ a) in ton : ECA 8,22,17
		SM17-170 CASH REGISTER VALIDATION
FOR DEPARTMENT USE ONLY:		(EHS Permit #)
DATE	EHS SPECIALIST SEAL PLACEME	
INITIAL SITE INSPECTION		
APPLICATION APPROVAL		
INSTALLATION INSPECTION	DEPTH SEAL MATERIAL	
RECEIPT OF WELL-LOG		
COMMENTS:		
EHS-500-rev 5/2013		OZZUFT
		096/22/127 2384

SANTA CRUZ COUNTY HEALTH S				EAN ST, RM 312, SA	NTA CRUZ, CA 95060 (831) 454	4-2022
	TION FOR SIT				WELL NUMBER: SV-	3
New Replacement Supp				*********		=======
018-151-39	Site Mit Case APN	(if diff.)				,
Well APN Well Site Address 25 E. 5th Street, Wat		(11 0.1.1.)				
Well Site Property Owner Phil & Martha			Address (if diff.) 1	02 Carl Avenue,	Santa Cruz, CA	
Site Mit Case Address (if different)						
Consultant Weber, Hayes & Associate	s A	ddress 120	Westgate Drive, Wat	sonville, CA 9507		
Drilling Contractor Environmental Contra	ol Associates, Inc.		License # 6959		Phone 831.662.8178	
Mail Correspondence To: Jered Weber,	Hayes & Associates, 12	0 Westgate Dri	ve, Watsonville, CA	95076		
WELL INFORMATION (Complete for	All Permit Applicat	tions):				
WELL TYPE (check all that apply)	WELL CONSTRUCT	ION METHOD		ECIFICATIONS		
Groundwater Monitoring	Hollow Stem			Diameter (in.)	2.25	
Soil Gas Monitoring	Rotary				~10.5	
Remediation	Cable			Well (ft.) ~5 &		
Groundwater Extraction	Sonic	*		k, Vault Box: ⊠ terial(s)		
Dual Phase Extraction	Direct Push				& 8.5	
Vapor Extraction	Other WELL CASING SPE	CIFICATIONS		Interval (ft.) 0.		
Air Sparge	Material Teflon t			Bentonite Int. (f		
	Gauge or Wall Thick				t. (ft.) 3.5-4.5 & 8.5-9.5	
DISTANCE FROM WELL TO (ft.):	Internal Diameter (i		Other Se	eal Material Int. (f	t.) <u>n/a</u>	
Septic Systems n/a	Type of Joint NA			ack Material(s)		
Sever n/a	Perforation Interval				5.5 & 9.5-10.5	
Nearest Property Line ~25 feet	Perforation Size (in	.) <u>NA</u>	Other F	Iter Pack Interval	(ft.) <u>n/a</u>	
WITHIN WATER DISTRICT SERVICE A OTHER WELLS ON PROPERTY? CONDITION OF OTHER WELLS ON P Attach 2 copies of a plot plan (ADDITIONAL WELL DESTRUCTION Proposed Destruction Method: <u>Drill-</u>	ROPERTY: In Use <u>2</u> see attached for rec N INFORMATION:	juirements)	e Desiroyed		cription of the proposed de	
Proposed Destruction Metrica:						
A CURRENTLY EFFECTIVE		NORKERS COMP	MPENSATION INSU	RANCE FOR TH	E DRILLER IS ATTACHED	OR ON FILE
WITH EHS. INSURANCE C	ARRIER State Fund		K FOR WHICH THI	S PERMIT IS ISS	UED SIGNEES SHALL NO	OT EMPLOY
SIGNEES CERTIFY THAT II ANY PERSON IN ANY MAN	NER SO AS TO BECO	ME SUBJECT 1	TO THE WORKER'S	COMPENSATIO	N LAWS OF CALIFORNIA	
Signees agree to the following statement wells, and declare under penalty of perjury to work. Within 60 days after completion of we	s: I hereby agree to con	nply with all laws	and regulations of the	County of Santa	Cruz and State of California p It least 5 business days prior t expires one year from date	pertaining to to commencing
Signatures: WELL SITE PROP. OWNER			DRILLING CONTR		Si for: ECA	812211+
WELL SITE PROP. OWNER			em	7-171	CASH REGISTER VA	
FOR DEPARTMENT USE ONLY:				EHS Permit #)	CASH REGISTER VA	
DATE	EHS SPECIALIST		MENT WITNESSED:	- 0	8/24/2017	r 00000
INITIAL SITE INSPECTION] NO □ N/A		340 9:25AM	61enna 000
APPLICATION APPROVAL	17 9 PC	DATE DEPTH			PE # 2381	\$222.0
INSTALLATION INSPECTION		SEAL MATER	IAL		CHECK 1	\$222-0
FINAL						
COMMENTS:						
					032677	
EHS-500-rev 5/2013					032677	2384

APPLICATION FOR SITE-MITIGATION-PROGRAM WELL PERMIT

	plemental 🔳 Destruction	Other	WE	LL NUMBER: SV-5	
New CReplacement Sup					
018-151-39					
Well APN	Site Mit Case APN (if diff.)	_			
Well Site Address 25 E. 5th Street, Wa	atsonville, CA				
Well Site Property Owner Phil & Martha	a Oneto	Address (if	diff.) 102 Carl Avenue, Santa	a Cruz, CA	
Site Mit Case Address (if different)					
Consultant Weber, Hayes & Associat	Address		rive, Watsonville, CA 95076		
Drilling Contractor Environmental Con	trol Associates, Inc.			hone 831.662.8178	
Mail Correspondence To: Jered Weber	, Hayes & Associates, 120 Westga	ate Drive, Watson	ville, CA 95076		
3					
WELL INFORMATION (Complete for	or All Permit Applications):		WELL SPECIFICATIONS		
WELL TYPE (check all that apply)	WELL CONSTRUCTION MET	HOD	Borehole Diameter (in.) 2.2	5)	
Groundwater Monitoring	 Hollow Stem Rotary 		Depth of Borehole (ft.) ~10.	5	
Soil Gas Monitoring			Depth of Well (ft.) ~5 & 10 (ft.)		
Remediation Groundwater Extraction			Cap, Lock, Vault Box: X Yes		
Dual Phase Extraction	Direct Push		Seal Material(s)		
Vapor Extraction	Other		Depth of Seal (ft.) 3.5 & 8.5		
Air Sparge	WELL CASING SPECIFICAT	IONS	Cement Interval (ft.) 0.5-3.5		
Test Well	Material Teflon tubing		Hydrated Bentonite Int. (ft.)		
□ Other	Gauge or Wall Thickness		Dry Granular Bentonite Int. (ft.		
DISTANCE FROM WELL TO (ft.):	Internal Diameter (in.) 3/16	š	Other Seal Material Int. (ft.)		
Septic Systems n/a	Type of Joint NA		Filter Pack Material(s) #3 S Sand Interval (ft.) 4.5-5.5 &		
Sewer n/a	Perforation Interval (ft.) NA	1	Other Filter Pack Interval (ft.)		
Nearest Property Line ~25 feet	Perforation Size (in.) NA				
WITHIN WATER DISTRICT SERVICE OTHER WELLS ON PROPERTY? D CONDITION OF OTHER WELLS ON Attach 2 copies of a plot plan ADDITIONAL WELL DESTRUCTION	(see attached for requirement (NUT IN USE 2 (See attached for requirement)	nts)	d Other		
Proposed Destruction Method: Dri	II-Out At	ttach original well	construction log and a description		
	WORKER'S C	OMPENSATION	CERTIFICATE		OR ON FILE
A CURRENTLY EFFECTIV	WORKER'S C E CERTIFICATION OF WORKER	S COMPENSATI	ON INSURANCE FOR THE DR POLICY # '	1972096-17	
WITH EHS. INSURANCE SIGNEES CERTIFY THAT ANY PERSON IN ANY MA	CARRIER <u>State Fund</u> IN THE PERFORMANCE OF THE NNER SO AS TO BECOME SUBJ	E WORK FOR WH	HICH THIS PERMIT IS ISSUED	SIGNEES SHALL NO	T EMPLOY
		ut and an end of	and of the County of Santa Cruz	and State of California p	ertaining to
Signees agree to the following stateme wells, and declare under penalty of perjury	the information submitted on this ap	oplication is true ar	d correct. I will notify EHS at least	st 5 business days prior t	o commencing
work. Within 60 days after completion of v	work, I will furnish EHS with a report	of the work perform	ned. I understand this permit exp	-	n Issuance.
Signatures: WELL SITE PROP. OWNER	A for: Owner 8,22			foe: ECA	3/22/17
			Sm7-179	CASH REGISTER VAL	
FOR DEPARTMENT USE ONLY:			(EHS Permit #)	CASH REGISTER VAL	
DATE	EHS SPECIALIST SEAL P	PLACEMENT WITN	ESSED: 41741	3:2541	61enna 000
INITIAL SITE INSPECTION			101	PE # 2381	\$222.0
APPLICATION APPROVAL	TITU SKL DATE			CRECKI	\$222-00
INSTALLATION INSPECTION	DEPTH SEAL M	MATERIAL			
RECEIPT OF WELL LOG					
FINAL		-			
COMMENTS:					43
				0221177	
EHS-500-rev 5/2013				037677	2384
			(

Weber, Hayes & Associates Hydrogeology and Environmental Engineering 120 Westgate Dr., Watsonville, CA 95076 PH: (831) 722-3580 FAX: (831) 722-1159 www.weber-hayes.com	Text Page 1/2 INDICATE ATTACHMENTS THAT APPLY
Client: Phil & Martha Oneto	Date: September 6, 2017
Site Location: 25 E. Fifth Street, Watsonville, CA	Study #: 2X404.C
Field Tasks: Drilling Sampling Other (see below): SV Well Destructions Source of the second se	Weather Conditions: Foggy + Cool (~65°F)
Personnel / Company On-Site: Jered Chaney (Weber, Hayes and Associates	s: WHA)
TIME:	
0740 => Arrive onsite. Environmental Control Associates (Driller - J Prep For: 1) Collect Shallow Soil Samples (boringe B-7 + B-11 for Voc required for land fill acceptance.	eff Ednood) oncite 6.5 + 1.5') at Former - analysis as
2) Dr.11 out dostruction of vapor we	115 50-2,3+5
0820 => Stage rig at B-11 => Core to 2' bys Samples	+ Collect Soil Samples
0830 => Stage rig at B-7 => Core to 2'bgs	+ collect soil Semples
0835 => Stage rig at SV-5; Prep for drill ou	t destruction.
Le Use rig to pull up on tubing.	
	in tact. sr w/ 6" diametr
0930 => SV-5 augered out to 11' bgs -> bere Box computing removed.	
- Free fall went concart to ~ 3" bys	
0950 => SV-5 scaled w/ next cenery to w/in Used ~ 3.5 42# bags (~ 16-17	allons)
1000 => Stage rig at SU-2 - Prep For destruc	ction.
1010 => (using completely removed in-tact. - break out well box.	
1053 => SV-2 dr. lled out to 10.5' -> bor - Scott Carson (scHSA)-inspector ons.	te.
1900 => Seal borchole w/ neat compate 1110 => SV-2 borchole sealed to w/in a 2- ~ 13-15g-11025.	3" of surface.
1115 => Scott Carson Lerves Ste	
1130 => Stage rig @ SV-3; Prep For dr.11 out	destruction.
0 1 .	Signature of Field Personnel & Date